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ts objects and ts function
A time series is stored in a ts object in R:

a list of numbers
information about times those numbers were recorded.

Example

Year Observation

2012 123
2013 39
2014 78
2015 52
2016 110

y <- ts(c(123,39,78,52,110), start=2012)
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ts objects and ts function

For observations that are more frequent than once per
year, add a frequency argument.

E.g., monthly data stored as a numerical vector z:

y <- ts(z, frequency=12, start=c(2003, 1))
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ts objects and ts function

ts(data, frequency, start)
Type of data frequency start example

Annual
Quarterly
Monthly
Daily
Weekly
Hourly
Half-hourly
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ts objects and ts function

ts(data, frequency, start)
Type of data frequency start example

Annual 1
Quarterly
Monthly
Daily
Weekly
Hourly
Half-hourly
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ts objects and ts function

ts(data, frequency, start)
Type of data frequency start example

Annual 1 1995
Quarterly
Monthly
Daily
Weekly
Hourly
Half-hourly
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ts objects and ts function

ts(data, frequency, start)
Type of data frequency start example

Annual 1 1995
Quarterly 4
Monthly
Daily
Weekly
Hourly
Half-hourly
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ts objects and ts function

ts(data, frequency, start)
Type of data frequency start example

Annual 1 1995
Quarterly 4 c(1995,2)
Monthly
Daily
Weekly
Hourly
Half-hourly
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ts objects and ts function

ts(data, frequency, start)
Type of data frequency start example

Annual 1 1995
Quarterly 4 c(1995,2)
Monthly 12
Daily
Weekly
Hourly
Half-hourly
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ts objects and ts function

ts(data, frequency, start)
Type of data frequency start example

Annual 1 1995
Quarterly 4 c(1995,2)
Monthly 12 c(1995,9)
Daily
Weekly
Hourly
Half-hourly
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ts objects and ts function

ts(data, frequency, start)
Type of data frequency start example

Annual 1 1995
Quarterly 4 c(1995,2)
Monthly 12 c(1995,9)
Daily 7 or 365.25
Weekly
Hourly
Half-hourly
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ts objects and ts function

ts(data, frequency, start)
Type of data frequency start example

Annual 1 1995
Quarterly 4 c(1995,2)
Monthly 12 c(1995,9)
Daily 7 or 365.25 1 or c(1995,234)
Weekly
Hourly
Half-hourly
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ts objects and ts function

ts(data, frequency, start)
Type of data frequency start example

Annual 1 1995
Quarterly 4 c(1995,2)
Monthly 12 c(1995,9)
Daily 7 or 365.25 1 or c(1995,234)
Weekly 52.18
Hourly
Half-hourly
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ts objects and ts function

ts(data, frequency, start)
Type of data frequency start example

Annual 1 1995
Quarterly 4 c(1995,2)
Monthly 12 c(1995,9)
Daily 7 or 365.25 1 or c(1995,234)
Weekly 52.18 c(1995,23)
Hourly
Half-hourly
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ts objects and ts function

ts(data, frequency, start)
Type of data frequency start example

Annual 1 1995
Quarterly 4 c(1995,2)
Monthly 12 c(1995,9)
Daily 7 or 365.25 1 or c(1995,234)
Weekly 52.18 c(1995,23)
Hourly 24 or 168 or 8,766
Half-hourly
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ts objects and ts function

ts(data, frequency, start)
Type of data frequency start example

Annual 1 1995
Quarterly 4 c(1995,2)
Monthly 12 c(1995,9)
Daily 7 or 365.25 1 or c(1995,234)
Weekly 52.18 c(1995,23)
Hourly 24 or 168 or 8,766 1
Half-hourly
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ts objects and ts function

ts(data, frequency, start)
Type of data frequency start example

Annual 1 1995
Quarterly 4 c(1995,2)
Monthly 12 c(1995,9)
Daily 7 or 365.25 1 or c(1995,234)
Weekly 52.18 c(1995,23)
Hourly 24 or 168 or 8,766 1
Half-hourly 48 or 336 or 17,532
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ts objects and ts function

ts(data, frequency, start)
Type of data frequency start example

Annual 1 1995
Quarterly 4 c(1995,2)
Monthly 12 c(1995,9)
Daily 7 or 365.25 1 or c(1995,234)
Weekly 52.18 c(1995,23)
Hourly 24 or 168 or 8,766 1
Half-hourly 48 or 336 or 17,532 1
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Australian GDP

ausgdp <- ts(x, frequency=4, start=c(1971,3))
Class: “ts”
Print and plotting methods available.

ausgdp

## Qtr1 Qtr2 Qtr3 Qtr4
## 1971 4612 4651
## 1972 4645 4615 4645 4722
## 1973 4780 4830 4887 4933
## 1974 4921 4875 4867 4905
## 1975 4938 4934 4942 4979
## 1976 5028 5079 5112 5127
## 1977 5130 5101 5072 5069
## 1978 5100 5166 5244 5312
## 1979 5349 5370 5388 5396
## 1980 5388 5403 5442 5482
## 1981 5506 5531 5560 5583
## 1982 5568 5524 5452 5358
## 1983 5303 5320 5408 5531
## 1984 5624 5669 5697 5736
## 1985 5811 5894 5952 5965
## 1986 5943 5924 5935 5979
## 1987 6035 6097 6167 6227
## 1988 6256 6272 6295 6345
## 1989 6413 6468 6497 6511
## 1990 6514 6512 6490 6442
## 1991 6390 6346 6328 6340
## 1992 6362 6389 6433 6491
## 1993 6541 6566 6602 6671
## 1994 6765 6847 6890 6918
## 1995 6962 7018 7083 7134
## 1996 7173 7212 7242 7276
## 1997 7332 7400 7478 7550
## 1998 7618
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Australian GDP

autoplot(ausgdp)
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Residential electricity sales

elecsales

## Time Series:
## Start = 1989
## End = 2008
## Frequency = 1
## [1] 2354.34 2379.71 2318.52 2468.99 2386.09 2569.47 2575.72 2762.72
## [9] 2844.50 3000.70 3108.10 3357.50 3075.70 3180.60 3221.60 3176.20
## [17] 3430.60 3527.48 3637.89 3655.00
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Time plots
autoplot(melsyd[,"Economy.Class"])
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Time plots

autoplot(a10) + ylab("$ million") + xlab("Year") +
ggtitle("Antidiabetic drug sales")
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Lab Session 1
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Seasonal plots
ggseasonplot(a10, ylab="$ million",

year.labels=TRUE, year.labels.left=TRUE) +
ggtitle("Seasonal plot: antidiabetic drug sales")
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Seasonal plots

Data plotted against the individual “seasons” in which
the data were observed. (In this case a “season” is a
month.)
Something like a time plot except that the data from
each season are overlapped.
Enables the underlying seasonal pattern to be seen
more clearly, and also allows any substantial
departures from the seasonal pattern to be easily
identified.
In R: ggseasonplot
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Seasonal polar plots
ggseasonplot(a10, polar=TRUE) + ylab("$ million")
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Seasonal subseries plots

ggsubseriesplot(a10) + ylab("$ million") +
ggtitle("Seasonal subseries plot: antidiabetic drug sales")
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Seasonal subseries plots

Data for each season collected together in time plot
as separate time series.
Enables the underlying seasonal pattern to be seen
clearly, and changes in seasonality over time to be
visualized.
In R: ggsubseriesplot
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Quarterly Australian Beer Production

beer <- window(ausbeer,start=1992)
autoplot(beer)
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Quarterly Australian Beer Production

ggseasonplot(beer,year.labels=TRUE)
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Quarterly Australian Beer Production

ggsubseriesplot(beer)
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Time series patterns

Trend pattern exists when there is a long-term
increase or decrease in the data.

Seasonal pattern exists when a series is influenced by
seasonal factors (e.g., the quarter of the year,
the month, or day of the week).

Cyclic pattern exists when data exhibit rises and falls
that are not of fixed period (duration usually of
at least 2 years).
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Time series components

Differences between seasonal and cyclic patterns:
seasonal pattern constant length; cyclic pattern
variable length
average length of cycle longer than length of seasonal
pattern
magnitude of cycle more variable than magnitude of
seasonal pattern
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Time series patterns

autoplot(window(elec, start=1980)) +
ggtitle("Australian electricity production") +
xlab("Year") + ylab("GWh")
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Time series patterns

autoplot(bricksq) +
ggtitle("Australian clay brick production") +
xlab("Year") + ylab("million units")
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Time series patterns

autoplot(hsales) +
ggtitle("Sales of new one-family houses, USA") +
xlab("Year") + ylab("Total sales")
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Time series patterns

autoplot(ustreas) +
ggtitle("US Treasury Bill Contracts") +
xlab("Day") + ylab("price")
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Time series patterns

autoplot(lynx) +
ggtitle("Annual Canadian Lynx Trappings") +
xlab("Year") + ylab("Number trapped")
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Seasonal or cyclic?

Differences between seasonal and cyclic patterns:

seasonal pattern constant length; cyclic pattern
variable length
average length of cycle longer than length of seasonal
pattern
magnitude of cycle more variable than magnitude of
seasonal pattern

The timing of peaks and troughs is predictable with
seasonal data, but unpredictable in the long term with
cyclic data.

Forecasting: principles and practice Seasonal or cyclic? 31



Seasonal or cyclic?

Differences between seasonal and cyclic patterns:

seasonal pattern constant length; cyclic pattern
variable length
average length of cycle longer than length of seasonal
pattern
magnitude of cycle more variable than magnitude of
seasonal pattern

The timing of peaks and troughs is predictable with
seasonal data, but unpredictable in the long term with
cyclic data.
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Example: Beer production

beer <- window(ausbeer, start=1992)
gglagplot(beer, lags=9, do.lines=FALSE,

continuous=FALSE)
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Example: Beer production

lag 7 lag 8 lag 9

lag 4 lag 5 lag 6

lag 1 lag 2 lag 3

400 450 500 400 450 500 400 450 500

400

450

500

400

450

500

400

450

500

Quarter

1

2

3

4

Forecasting: principles and practice Lag plots and autocorrelation 34



Lagged scatterplots

Each graph shows yt plotted against yt−k for different
values of k.
The autocorrelations are the correlations associated
with these scatterplots.
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Autocorrelation

Covariance and correlation: measure extent of linear
relationship between two variables (y and X).
Autocovariance and autocorrelation: measure linear
relationship between lagged values of a time series y.

We measure the relationship between: yt and yt−1
yt and yt−2
yt and yt−3
etc.
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Autocorrelation

Covariance and correlation: measure extent of linear
relationship between two variables (y and X).
Autocovariance and autocorrelation: measure linear
relationship between lagged values of a time series y.

We measure the relationship between: yt and yt−1
yt and yt−2
yt and yt−3
etc.
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Autocorrelation

Covariance and correlation: measure extent of linear
relationship between two variables (y and X).
Autocovariance and autocorrelation: measure linear
relationship between lagged values of a time series y.

We measure the relationship between: yt and yt−1
yt and yt−2
yt and yt−3
etc.
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Autocorrelation
We denote the sample autocovariance at lag k by ck and
the sample autocorrelation at lag k by rk. Then define

ck =
1
T

T∑
t=k+1

(yt − ȳ)(yt−k − ȳ)

and rk = ck/c0

r1 indicates how successive values of y relate to each
other
r2 indicates how y values two periods apart relate to
each other
rk is almost the same as the sample correlation
between yt and yt−k.
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Autocorrelation
We denote the sample autocovariance at lag k by ck and
the sample autocorrelation at lag k by rk. Then define

ck =
1
T

T∑
t=k+1

(yt − ȳ)(yt−k − ȳ)

and rk = ck/c0

r1 indicates how successive values of y relate to each
other
r2 indicates how y values two periods apart relate to
each other
rk is almost the same as the sample correlation
between yt and yt−k.
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Autocorrelation
Results for first 9 lags for beer data:/footnotesize

r1 r2 r3 r4 r5 r6 r7 r8 r9

-0.102 -0.657 -0.060 0.869 -0.089 -0.635 -0.054 0.832 -0.108

ggAcf(beer)
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Lag
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F

Series: beer
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Autocorrelation

r4 higher than for the other lags. This is due to the
seasonal pattern in the data: the peaks tend to be 4
quarters apart and the troughs tend to be 2 quarters
apart.
r2 is more negative than for the other lags because
troughs tend to be 2 quarters behind peaks.
Together, the autocorrelations at lags 1, 2, . . . , make
up the autocorrelation or ACF.
The plot is known as a correlogram
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Recognizing seasonality in a time series

If there is seasonality, the ACF at the seasonal lag (e.g., 12
for monthly data) will be large and positive.

For seasonal monthly data, a large ACF value will be
seen at lag 12 and possibly also at lags 24, 36, . . .
For seasonal quarterly data, a large ACF value will be
seen at lag 4 and possibly also at lags 8, 12, . . .
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Aus monthly electricity production

elec2 <- window(elec, start=1980)
autoplot(elec2)

8000

10000

12000

14000

1980 1985 1990 1995

Time

el
ec

2

Forecasting: principles and practice Lag plots and autocorrelation 41



Aus monthly electricity production

ggAcf(elec2, lag.max=48)
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Aus monthly electricity production

Time plot shows clear trend and seasonality.

The same features are reflected in the ACF.

The slowly decaying ACF indicates trend.
The ACF peaks at lags 12, 24, 36, . . . , indicate
seasonality of length 12.
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Which is which?
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Example: White noise

wn <- ts(rnorm(36))
autoplot(wn)

−1

0

1

2

0 10 20 30

Time

w
n

Forecasting: principles and practice White noise 46



Example: White noise

wn <- ts(rnorm(36))
autoplot(wn)
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White noise data is uncorrelated across time with
zero mean and constant variance.
(Technically, we require independence as well.)



Example: White noise

r1 -0.09
r2 -0.02
r3 0.14
r4 -0.00
r5 -0.06
r6 -0.08
r7 0.14
r8 -0.10
r9 -0.21
r10 -0.04

Sample autocorrelations for white noise series.

For uncorrelated data, we would expect each
autocorrelation to be close to zero.
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Sampling distribution of autocorrelations

Sampling distribution of rk for white noise data is
asymptotically N(0,1/T).

95% of all rk for white noise must lie within
±1.96/

√
T.

If this is not the case, the series is probably not WN.
Common to plot lines at±1.96/

√
T when plotting

ACF. These are the critical values.
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Sampling distribution of autocorrelations

Sampling distribution of rk for white noise data is
asymptotically N(0,1/T).

95% of all rk for white noise must lie within
±1.96/

√
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√
T when plotting

ACF. These are the critical values.
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Autocorrelation
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T = 36 and so critical
values at
±1.96/

√
36 = ±0.327.

All autocorrelation
coefficients lie within
these limits, confirming
that the data are white
noise. (More precisely,
the data cannot be
distinguished from white noise.)



Example: Pigs slaughtered
pigs2 <- window(pigs, start=1990)
autoplot(pigs2) +

xlab("Year") + ylab("thousands") +
ggtitle("Number of pigs slaughtered in Victoria")
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Example: Pigs slaughtered

ggAcf(pigs2)

−0.2

0.0

0.2

12 246 18

Lag

A
C

F

Series: pigs2
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Example: Pigs slaughtered

Monthly total number of pigs slaughtered in the state of
Victoria, Australia, from January 1990 through August
1995. (Source: Australian Bureau of Statistics.)

Difficult to detect pattern in time plot.
ACF shows some significant autocorrelation at lags 1,
2, and 3.
r12 relatively large although not significant. This may
indicate some slight seasonality.

These show the series is not a white noise series.
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Example: Pigs slaughtered

Monthly total number of pigs slaughtered in the state of
Victoria, Australia, from January 1990 through August
1995. (Source: Australian Bureau of Statistics.)

Difficult to detect pattern in time plot.
ACF shows some significant autocorrelation at lags 1,
2, and 3.
r12 relatively large although not significant. This may
indicate some slight seasonality.

These show the series is not a white noise series.
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Combination graph

ggtsdisplay(pigs2, plot.type='scatter')

80000

90000

100000

110000

1990 1991 1992 1993 1994 1995

pigs2

−0.2

0.0

0.2

0 5 10 15 20

Lag

A
C

F

80000

90000

100000

110000

80000 90000 100000 110000

Yt−1

Y
t

Forecasting: principles and practice White noise 53



Outline
1 Time series in R

2 Time plots

3 Lab session 1

4 Seasonal plots

5 Seasonal or cyclic?

6 Lag plots and autocorrelation

7 White noise

8 Lab session 2

Forecasting: principles and practice Lab session 2 54



Lab Session 2
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