Forecasting medium- and long-term peak electricity demand

Rob J Hyndman

Business & Economic Forecasting Unit
The problem

- We want to forecast the peak electricity demand in a half-hour period in ten years time.
The problem

- We want to forecast the peak electricity demand in a half-hour period in ten years time.
- We have ten years of half-hourly electricity data, temperature data and some economic and demographic data.
The problem

- We want to forecast the peak electricity demand in a half-hour period in ten years time.
- We have ten years of half-hourly electricity data, temperature data and some economic and demographic data.
- The location is South Australia: home to the most volatile electricity demand in the world.
The problem

- We want to forecast the peak electricity demand in a half-hour period in ten years time.
- We have ten years of half-hourly electricity data, temperature data and some economic and demographic data.
- The location is South Australia: home to the most volatile electricity demand in the world.
The problem

- We want to forecast the peak electricity demand in a half-hour period in ten years time.
- We have ten years of half-hourly electricity data, temperature data and some economic and demographic data.
- The location is South Australia: home to the most volatile electricity demand in the world.

Sounds impossible?
Demand data

Half-hourly demand data for South Australia from 1 July 1997 to 31 March 2007. Only data from November–March are shown.
Demand data

Half-hourly demand data for South Australia from 1 November 2006 to 31 March 2007.
Demand data

SA demand (first 3 weeks of January 2007)

Half-hourly demand data for South Australia from 1–21 January 2007.
Demand boxplots

Time: 12 midnight

Day of week: Mon, Tue, Wed, Thu, Fri, Sat, Sun

Demand (GW)
Temperature data

Time: 12 midnight

- Workday
- Non-workday

Non-Olympic Demand (GW)

Temperature (deg C)
Demand drivers

- calendar effects
Demand drivers

- calendar effects
- prevailing weather conditions (and the timing of those conditionals)
Demand drivers

- calendar effects
- prevailing weather conditions (and the timing of those conditionals)
- climate changes
Demand drivers

- calendar effects
- prevailing weather conditions (and the timing of those conditionals)
- climate changes
- economic and demographic changes
Demand drivers

- calendar effects
- prevailing weather conditions (and the timing of those conditionals)
- climate changes
- economic and demographic changes
- changing technology
Demand drivers

- calendar effects
- prevailing weather conditions (and the timing of those conditionals)
- climate changes
- economic and demographic changes
- changing technology
Demand drivers

- calendar effects
- prevailing weather conditions (and the timing of those conditionals)
- climate changes
- economic and demographic changes
- changing technology

Modelling framework

- Semi-parametric additive models with correlated errors.
Demand drivers

- calendar effects
- prevailing weather conditions (and the timing of those conditionals)
- climate changes
- economic and demographic changes
- changing technology

Modelling framework

- **Semi-parametric additive models** with correlated errors.
- Each half-hour period modelled separately.
Demand drivers

- calendar effects
- prevailing weather conditions (and the timing of those conditionals)
- climate changes
- economic and demographic changes
- changing technology

Modelling framework

- **Semi-parametric additive models** with correlated errors.
- Each half-hour period modelled separately.
- Variables selected to provide best out-of-sample predictions for 2005/06 summer.
Equations

\[\log(y_{t,p}) = h_p(t) + f_p(w_{1,t}, w_{2,t}) + \sum_{j=1}^{J} c_j z_{j,t} + n_t \]

- \(y_{t,p} \) denotes demand at time \(t \) (measured in half-hourly intervals) during period \(p, p = 1, \ldots, 48; \)
Equations

\[
\log(y_{t,p}) = h_p(t) + f_p(w_{1,t}, w_{2,t}) + \sum_{j=1}^{J} c_j z_{j,t} + n_t
\]

- \(y_{t,p}\) denotes demand at time \(t\) (measured in half-hourly intervals) during period \(p, p = 1, \ldots, 48\);
- \(h_p(t)\) models all calendar effects;
- \(f_p(w_{1,t}, w_{2,t})\) models all temperature effects where \(w_{1,t}\) is a vector of recent temperatures at Kent Town and \(w_{2,t}\) is a vector of recent temperatures at Adelaide airport;
- \(c_j z_{j,t}\) is a demographic or economic variable at time \(t\);
- \(n_t\) denotes the model error at time \(t\).
Forecasting electricity demand

Equations

\[
\log(y_{t,p}) = h_p(t) + f_p(w_{1,t}, w_{2,t}) + \sum_{j=1}^{J} c_j z_{j,t} + n_t
\]

- \(y_{t,p}\) denotes demand at time \(t\) (measured in half-hourly intervals) during period \(p, p = 1, \ldots, 48\);
- \(h_p(t)\) models all calendar effects;
- \(f_p(w_{1,t}, w_{2,t})\) models all temperature effects where \(w_{1,t}\) is a vector of recent temperatures at Kent Town and \(w_{2,t}\) is a vector of recent temperatures at Adelaide airport;
Equations

\[\log(y_{t,p}) = h_p(t) + f_p(w_{1,t}, w_{2,t}) + \sum_{j=1}^{J} c_j z_{j,t} + n_t \]

- \(y_{t,p} \) denotes demand at time \(t \) (measured in half-hourly intervals) during period \(p, p = 1, \ldots, 48; \)
- \(h_p(t) \) models all calendar effects;
- \(f_p(w_{1,t}, w_{2,t}) \) models all temperature effects where \(w_{1,t} \) is a vector of recent temperatures at Kent Town and \(w_{2,t} \) is a vector of recent temperatures at Adelaide airport;
- \(z_{j,t} \) is a demographic or economic variable at time \(t \).
Equations

\[\log(y_{t,p}) = h_p(t) + f_p(w_{1,t}, w_{2,t}) + \sum_{j=1}^{J} c_j z_{j,t} + n_t \]

- \(y_{t,p} \) denotes demand at time \(t \) (measured in half-hourly intervals) during period \(p, p = 1, \ldots, 48 \);
- \(h_p(t) \) models all calendar effects;
- \(f_p(w_{1,t}, w_{2,t}) \) models all temperature effects where \(w_{1,t} \) is a vector of recent temperatures at Kent Town and \(w_{2,t} \) is a vector of recent temperatures at Adelaide airport;
- \(z_{j,t} \) is a demographic or economic variable at time \(t \);
- \(n_t \) denotes the model error at time \(t \).
Equations

\[\log(y_{t,p}) = h_p(t) + f_p(w_{1,t}, w_{2,t}) + \sum_{j=1}^{J} c_j z_{j,t} + n_t \]

\(h_p(t) \) includes handle annual, weekly and daily seasonal patterns as well as public holidays:

\[h_p(t) = \ell_p(t) + \alpha_{t,p} + \beta_{t,p} + \gamma_{t,p} + \delta_{t,p} \]

\(\ell_p(t) \) is “time of summer” effect (a regression spline);
Forecasting electricity demand

Equations

\[\log(y_{t,p}) = h_p(t) + f_p(w_1,t, w_2,t) + \sum_{j=1}^{J} c_j z_{j,t} + n_t \]

\(h_p(t) \) includes handle annual, weekly and daily seasonal patterns as well as public holidays:

\[h_p(t) = \ell_p(t) + \alpha_{t,p} + \beta_{t,p} + \gamma_{t,p} + \delta_{t,p} \]

- \(\ell_p(t) \) is “time of summer” effect (a regression spline);
- \(\alpha_{t,p} \) is day of week effect;
Forecasting electricity demand

Equations

\[\log(y_{t,p}) = h_p(t) + f_p(w_1,t, w_2,t) + \sum_{j=1}^{J} c_j z_{j,t} + n_t \]

\(h_p(t) \) includes handle annual, weekly and daily seasonal patterns as well as public holidays:

\[h_p(t) = \ell_p(t) + \alpha_{t,p} + \beta_{t,p} + \gamma_{t,p} + \delta_{t,p} \]

- \(\ell_p(t) \) is “time of summer” effect (a regression spline);
- \(\alpha_{t,p} \) is day of week effect;
- \(\beta_{t,p} \) is “holiday” effect;
Equations

\[
\log(y_{t,p}) = h_p(t) + f_p(w_{1,t}, w_{2,t}) + \sum_{j=1}^{J} c_j z_{j,t} + n_t
\]

\(h_p(t)\) includes handle annual, weekly and daily seasonal patterns as well as public holidays:

\[
h_p(t) = \ell_p(t) + \alpha_{t,p} + \beta_{t,p} + \gamma_{t,p} + \delta_{t,p}
\]

- \(\ell_p(t)\) is “time of summer” effect (a regression spline);
- \(\alpha_{t,p}\) is day of week effect;
- \(\beta_{t,p}\) is “holiday” effect;
- \(\gamma_{t,p}\) New Year’s Eve effect;
Forecasting electricity demand

Equations

\[
\log(y_{t,p}) = h_p(t) + f_p(w_{1,t}, w_{2,t}) + \sum_{j=1}^{J} c_j z_{j,t} + n_t
\]

\(h_p(t)\) includes handle annual, weekly and daily seasonal patterns as well as public holidays:

\[
h_p(t) = \ell_p(t) + \alpha_{t,p} + \beta_{t,p} + \gamma_{t,p} + \delta_{t,p}
\]

- \(\ell_p(t)\) is “time of summer” effect (a regression spline);
- \(\alpha_{t,p}\) is day of week effect;
- \(\beta_{t,p}\) is “holiday” effect;
- \(\gamma_{t,p}\) New Year’s Eve effect;
- \(\delta_{t,p}\) is millennium effect;
Fitted results (3pm)
Equations

\[\log(y_{t,p}) = h_p(t) + f_p(w_{1,t}, w_{2,t}) + \sum_{j=1}^{J} c_j z_{j,t} + n_t \]

\[f_p(w_{1,t}, w_{2,t}) = \sum_{k=0}^{6} \left[f_{k,p}(x_{t-k}) + g_{k,p}(d_{t-k}) \right] + q_p(x^+_t) + r_p(x^-_t) + s_p(\bar{x}_t) \]

\[+ \sum_{j=1}^{6} \left[F_{j,p}(x_{t-48j}) + G_{j,p}(d_{t-48j}) \right] \]

- \(x_t \) is ave temp across sites at time \(t \);
Equations

\[\log(y_{t,p}) = h_p(t) + f_p(w_{1,t}, w_{2,t}) + \sum_{j=1}^{J} c_j z_{j,t} + n_t \]

\[f_p(w_{1,t}, w_{2,t}) = \sum_{k=0}^{6} \left[f_{k,p}(x_{t-k}) + g_{k,p}(d_{t-k}) \right] + q_p(x_t^+) + r_p(x_t^-) + s_p(\bar{x}_t) \]

\[+ \sum_{j=1}^{6} \left[F_{j,p}(x_{t-48j}) + G_{j,p}(d_{t-48j}) \right] \]

- \(x_t \) is ave temp across sites at time \(t \);
- \(d_t \) is the temp difference between sites at time \(t \);
Equations

\[\log(y_{t,p}) = h_p(t) + f_p(w_{1,t}, w_{2,t}) + \sum_{j=1}^{J} c_j z_{j,t} + n_t \]

\[f_p(w_{1,t}, w_{2,t}) = \sum_{k=0}^{6} \left[f_{k,p}(x_{t-k}) + g_{k,p}(d_{t-k}) \right] + q_p(x_t^+) + r_p(x_t^-) + s_p(\bar{x}_t) \]

\[+ \sum_{j=1}^{6} \left[F_{j,p}(x_{t-48j}) + G_{j,p}(d_{t-48j}) \right] \]

- \(x_t \) is ave temp across sites at time \(t \);
- \(d_t \) is the temp difference between sites at time \(t \);
- \(x_t^+ \) is max of \(x_t \) values in past 24 hours;
Equations

\[\log(y_{t,p}) = h_p(t) + f_p(w_{1,t}, w_{2,t}) + \sum_{j=1}^{J} c_j z_{j,t} + n_t \]

\[f_p(w_{1,t}, w_{2,t}) = \sum_{k=0}^{6} \left[f_{k,p}(x_{t-k}) + g_{k,p}(d_{t-k}) \right] + q_p(x_t^+) + r_p(x_t^-) + s_p(\bar{x}_t) \]
\[+ \sum_{j=1}^{6} \left[F_{j,p}(x_{t-48j}) + G_{j,p}(d_{t-48j}) \right] \]

- \(x_t \) is ave temp across sites at time \(t \);
- \(d_t \) is the temp difference between sites at time \(t \);
- \(x_t^+ \) is max of \(x_t \) values in past 24 hours;
- \(x_t^- \) is min of \(x_t \) values in past 24 hours;
Equations

\[\log(y_{t,p}) = h_p(t) + f_p(w_{1,t}, w_{2,t}) + \sum_{j=1}^{J} c_j z_{j,t} + n_t \]

\[f_p(w_{1,t}, w_{2,t}) = \sum_{k=0}^{6} \left[f_{k,p}(x_{t-k}) + g_{k,p}(d_{t-k}) \right] + q_p(x_t^+) + r_p(x_t^-) + s_p(\bar{x}_t) \]

\[+ \sum_{j=1}^{6} \left[F_{j,p}(x_{t-48j}) + G_{j,p}(d_{t-48j}) \right] \]

- \(x_t \) is ave temp across sites at time \(t \);
- \(d_t \) is the temp difference between sites at time \(t \);
- \(x_t^+ \) is max of \(x_t \) values in past 24 hours;
- \(x_t^- \) is min of \(x_t \) values in past 24 hours;
- \(\bar{x}_t \) is ave temp in past seven days.
Equations

\[
\log(y_{t,p}) = h_p(t) + f_p(w_{1,t}, w_{2,t}) + \sum_{j=1}^{J} c_j z_{j,t} + n_t
\]

\[
f_p(w_{1,t}, w_{2,t}) = \sum_{k=0}^{6} \left[f_{k,p}(x_{t-k}) + g_{k,p}(d_{t-k}) \right] + q_p(x_t^+) + r_p(x_t^-) + s_p(\bar{x}_t)
\]

\[
+ \sum_{j=1}^{6} \left[F_{j,p}(x_{t-48j}) + G_{j,p}(d_{t-48j}) \right]
\]

- \(x_t\) is ave temp across sites at time \(t\);
- \(d_t\) is the temp difference between sites at time \(t\);
- \(x_t^+\) is max of \(x_t\) values in past 24 hours;
- \(x_t^-\) is min of \(x_t\) values in past 24 hours;
- \(\bar{x}_t\) is ave temp in past seven days.
Equations

\[
\log(y_{t,p}) = h_p(t) + f_p(\mathbf{w}_{1,t}, \mathbf{w}_{2,t}) + \sum_{j=1}^{J} c_j z_{j,t} + n_t
\]

\[
f_p(\mathbf{w}_{1,t}, \mathbf{w}_{2,t}) = \sum_{k=0}^{6} \left[f_{k,p}(x_{t-k}) + g_{k,p}(d_{t-k}) \right] + q_p(x_t^+) + r_p(x_t^-) + s_p(\bar{x}_t) + \sum_{j=1}^{6} \left[F_{j,p}(x_{t-48j}) + G_{j,p}(d_{t-48j}) \right]
\]

- \(x_t\) is ave temp across sites at time \(t\);
- \(d_t\) is the temp difference between sites at time \(t\);
- \(x_t^+\) is max of \(x_t\) values in past 24 hours;
- \(x_t^-\) is min of \(x_t\) values in past 24 hours;
- \(\bar{x}_t\) is ave temp in past seven days.

Each function is smooth and estimated using regression splines.
Fitted results (3pm)
Equations

\[
\log(y_{t,p}) = h_p(t) + f_p(w_{1,t}, w_{2,t}) + \sum_{j=1}^{J} c_j z_{j,t} + n_t
\]

- Other variables described by linear relationships with coefficients \(c_1, \ldots, c_J\).
Equations

\[\log(y_{t,p}) = h_p(t) + f_p(w_{1,t}, w_{2,t}) + \sum_{j=1}^{J} c_j z_{j,t} + n_t \]

- Other variables described by linear relationships with coefficients \(c_1, \ldots, c_J\).
- Estimation based on annual data.
Equations

\[\log(y_{t,p}) = h_p(t) + f_p(w_{1,t}, w_{2,t}) + \sum_{j=1}^{J} c_j z_{j,t} + n_t \]

- Other variables described by linear relationships with coefficients \(c_1, \ldots, c_J \).
- Estimation based on annual data.
Equations

\[\log(y_{t,p}) = h_p(t) + f_p(w_{1,t}, w_{2,t}) + \sum_{j=1}^{J} c_j z_{j,t} + n_t \]

- Other variables described by linear relationships with coefficients \(c_1, \ldots, c_J \).
- Estimation based on annual data.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Coefficient</th>
<th>Std. Error</th>
<th>t value</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>-0.13981</td>
<td>0.04338</td>
<td>-3.222</td>
<td>0.018094</td>
</tr>
<tr>
<td>Gross State Product</td>
<td>0.01684</td>
<td>0.00108</td>
<td>15.649</td>
<td>0.000004</td>
</tr>
<tr>
<td>Lag Price</td>
<td>-0.04957</td>
<td>0.00727</td>
<td>-6.818</td>
<td>0.000488</td>
</tr>
<tr>
<td>Cooling Degree Days</td>
<td>0.36300</td>
<td>0.01716</td>
<td>21.157</td>
<td>0.000001</td>
</tr>
</tbody>
</table>
Forecasting electricity demand

Predictions

<table>
<thead>
<tr>
<th>Year</th>
<th>Actual</th>
<th>Fitted</th>
</tr>
</thead>
<tbody>
<tr>
<td>1998</td>
<td>1.25</td>
<td></td>
</tr>
<tr>
<td>2000</td>
<td>1.30</td>
<td></td>
</tr>
<tr>
<td>2002</td>
<td>1.35</td>
<td></td>
</tr>
<tr>
<td>2004</td>
<td>1.40</td>
<td></td>
</tr>
<tr>
<td>2006</td>
<td>1.50</td>
<td></td>
</tr>
</tbody>
</table>
Predictions
Forecasting electricity demand

Predictions

Actual demand

Time

Predicted demand

Time
Predicting electricity demand

Predictions

<table>
<thead>
<tr>
<th>Predicted demand</th>
<th>Actual demand</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>1.5</td>
<td>1.5</td>
</tr>
<tr>
<td>2.0</td>
<td>2.0</td>
</tr>
<tr>
<td>2.5</td>
<td>2.5</td>
</tr>
<tr>
<td>3.0</td>
<td>3.0</td>
</tr>
</tbody>
</table>
Peak demand forecasting

\[
\log(y_{t,p}) = h_p(t) + f_p(w_1,t, w_2,t) + \sum_{j=1}^{J} c_j z_{j,t} + n_t
\]

Multiple alternative futures created by

- resampling residuals using a seasonal bootstrap;
Peak demand forecasting

\[\log(y_{t,p}) = h_p(t) + f_p(w_{1,t}, w_{2,t}) + \sum_{j=1}^{J} c_j z_{j,t} + n_t \]

Multiple alternative futures created by

- resampling residuals using a seasonal bootstrap;
- generating simulations of future temperature patterns based on seasonally bootstrapping past temperatures (with some adjustment for extremes and climate change);
Peak demand forecasting

\[
\log(y_{t,p}) = h_p(t) + f_p(w_1,t, w_2,t) + \sum_{j=1}^{J} c_j z_{j,t} + n_t
\]

Multiple alternative futures created by

- resampling residuals using a seasonal bootstrap;
- generating simulations of future temperature patterns based on seasonally bootstrapping past temperatures (with some adjustment for extremes and climate change);
- using assumed values for GSP and Price.
Forecasting electricity demand

Peak demand distribution

Demand

Density

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

0.0 0.5 1.0 1.5

Demand (GW)

2007/2008
2008/2009
2009/2010
2010/2011
2011/2012
2012/2013
2013/2014
2014/2015
2015/2016
2016/2017
2017/2018
Peak demand distribution

Annual maximum demand

Demand (GW)

Density

- 2007/2008
- 2008/2009
- 2009/2010
- 2010/2011
- 2011/2012
- 2012/2013
- 2013/2014
- 2014/2015
- 2015/2016
- 2016/2017
- 2017/2018
Forecasting electricity demand

Peak demand distribution

<table>
<thead>
<tr>
<th>Year</th>
<th>2000</th>
<th>2005</th>
<th>2010</th>
<th>2015</th>
</tr>
</thead>
<tbody>
<tr>
<td>90% Prob of exceedance in one year</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>50%</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>10%</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>2%</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
</tbody>
</table>

Graph showing the peak demand distribution from 2000 to 2015 with different probabilities of exceedance.
Conclusions

- We have forecast the extreme upper tail in ten years time using only ten years of data!
Conclusions

- We have forecast the extreme upper tail in ten years time using only ten years of data!
- This method has now been adopted for the official South Australian peak electricity demand forecasts.
Conclusions

- We have forecast the extreme upper tail in ten years time using only ten years of data!
- This method has now been adopted for the official South Australian peak electricity demand forecasts.
- We hope to extend method to Victoria in next year.
Conclusions

- We have forecast the extreme upper tail in ten years time using only ten years of data!
- This method has now been adopted for the official South Australian peak electricity demand forecasts.
- We hope to extend method to Victoria in next year.
- Method could also be used for short-term demand forecasting, if we add a model for correlated residuals.

Provides way to analyse probability of coincident peaks across different interconnected markets. Could be extended to whole year, providing probabilistic forecasts of total energy requirements.

An R package and a paper will (eventually) appear at www.robhyndman.info
Conclusions

- We have forecast the extreme upper tail in ten years time using only ten years of data!
- This method has now been adopted for the official South Australian peak electricity demand forecasts.
- We hope to extend method to Victoria in next year.
- Method could also be used for short-term demand forecasting, if we add a model for correlated residuals.
- Provides way to analyse probability of coincident peaks across different interconnected markets.
Conclusions

- We have forecast the extreme upper tail in ten years time using only ten years of data!
- This method has now been adopted for the official South Australian peak electricity demand forecasts.
- We hope to extend method to Victoria in next year.
- Method could also be used for short-term demand forecasting, if we add a model for correlated residuals.
- Provides way to analyse probability of coincident peaks across different interconnected markets.
- Could be extended to whole year, providing probabilistic forecasts of total energy requirements.
Conclusions

- We have forecast the extreme upper tail in ten years time using only ten years of data!
- This method has now been adopted for the official South Australian peak electricity demand forecasts.
- We hope to extend method to Victoria in next year.
- Method could also be used for short-term demand forecasting, if we add a model for correlated residuals.
- Provides way to analyse probability of coincident peaks across different interconnected markets.
- Could be extended to whole year, providing probabilistic forecasts of total energy requirements.
- An R package and a paper will (eventually) appear at www.robyndman.info