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functional time series models

Abstract

When independence is assumed, forecasts of mortality for sub-populations are almost always

divergent in the long term. We propose a method for coherent forecasting of mortality rates

for two or more sub-populations, based on functional principal components models of simple

and interpretable functions of rates. The product-ratio functional forecasting method models

and forecasts the geometric mean of sub-population rates and the ratio of sub-population rates

to product rates. Coherence is imposed by constraining the forecast ratio function through

stationary time series models. The method is applied to sex-specific data for Sweden and

state-specific data for Australia. Based on out-of-sample forecasts, the coherent forecasts are at

least as accurate in overall terms as comparable independent forecasts, and forecast accuracy is

homogenised across sub-populations.

Keywords: Mortality forecasting, coherent forecasts, functional data, Lee-Carter method, life

expectancy, mortality, age pattern of mortality, sex-ratio.
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1 Introduction

In recent years, we have seen considerable development in the modeling and forecasting of

mortality. This includes the pioneering work by Lee & Carter (1992) and a variety of extensions

and modifications of the single-factor Lee-Carter model (for example, Lee & Miller 2001, Booth

et al. 2002a, Currie et al. 2004, Renshaw & Haberman 2003, Cairns et al. 2006, 2008, Hyndman

& Ullah 2007); Booth & Tickle (2008) provide a comprehensive review. Most of this work has

focused on forecasting mortality for a single population. However, it is often important to

model mortality for two or more populations simultaneously, as for example, when forecasting

mortality by sex, by states within a country, or by country within a larger region such as Europe.

In such cases, it is usually desirable that the forecasts do not diverge over time.

Non-divergent forecasts for sub-populations within a larger population have been labelled

“coherent” (Li & Lee 2005). Coherent forecasting seeks to ensure that the forecasts for related

populations maintain certain structural relationships based on extensive historic observation

and theoretical considerations. For example, male mortality has been observed to be consist-

ently higher than female mortality at all ages, and while available evidence supports both

biological/genetic and social/cultural/environmental/behavioural hypotheses as to why this

is so, Kalben (2002) concludes that the determining factor is biological. Thus sex-differences

in mortality can be expected to persist in the future and to remain within observed limits.

Mortality forecasts for regions within the same country, can also be expected not to diverge

radically. Differences due to environmental and biological factors can be expected to remain un-

changed, while differences due to social, political, behavioural and cultural factors are unlikely

to produce persistent divergence in modern democracies where principles of equality apply.

Similar arguments may apply to countries within a common economic and political framework

such as the European Union.

The problem of obtaining coherent forecasts has previously been considered by Lee & Nault

(1993), Lee (2000) and Li & Lee (2005) in the context of the Lee-Carter model. Lee (2006)

presents a general framework for forecasting life expectancy as the sum of a common trend and

the population-specific rate of convergence towards that trend.

A related problem occurs in the case of disaggregated forecasts where there are several additive

absorbing states; for example, in forecasting mortality by cause of death. Wilmoth (1995)

quantified the way in which the multiple-decrement forecast based on proportional changes

in mortality rates by cause of death tends to be more pessimistic than the single-decrement
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forecast of total rates. Using death densities and compositional methods, Oeppen (2008) found

that the multiple-decrement compositional forecast is not always more pessimistic than the

single-decrement case.

Coherence has not previously been defined more precisely than the non-divergence of forecasts

for sub-populations. In this paper, we adopt a more precise definition: we label mortality

forecasts as coherent when the forecast age-specific ratios of death rates for any two sub-

populations converge to a set of appropriate constants. Exactly what this implies for the forecast

trajectories is detailed in Section 4.2.

In Section 2, we propose a new method for coherent mortality forecasting which involves

forecasting interpretable product and ratio functions of rates using the functional data paradigm

introduced in Hyndman & Ullah (2007). The product-ratio functional forecasting method can

be applied to two or more sub-populations, incorporates convenient calculation of prediction

intervals as well as point forecasts, and is suitable for use within a larger stochastic population

modelling framework such as Hyndman & Booth (2008). The new method is simple to apply,

flexible in its dynamics, and produces forecasts that are at least as accurate in overall terms as

the comparable independent method.

In Section 3, we illustrate the product-ratio method with functional time series models by

applying it to Swedish male and female mortality data and Australian state-specific mortality

data. We compare our mortality forecasts with those obtained from independent functional

time series models, and evaluate relative accuracy through out-of-sample forecasts. Section 4

contains a discussion of the method and findings.

2 A coherent functional method

We initially frame the problem in terms of forecasting male and female age-specific death rates,

as the two-sex application is the most common and the best understood. However, our method

can be applied generally to any number of sub-populations.

Let mt,F(x) denote the female death rate for age x and year t, t = 1, . . . ,n. We will model the log

death rate, yt,F(x) = log[mt,F(x)]. Similar notation applies for males.
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2.1 Functional data models

In the functional data paradigm, we assume that there is an underlying smooth function ft,F(x)

that we are observing with error. Thus,

yt,F(xi) = log[ft,F(xi)] + σt,F(xi)εt,F,i , (1)

where xi is the centre of age-group i (i = 1, . . . ,p), εt,F,i is an independent and identically

distributed standard normal random variable and σt,F(xi) allows the amount of noise to vary

with age x. Analogous notation is used for males. For smoothing, we use weighted penalized

regression splines (Wood 1994) constrained so that each curve is monotonically increasing above

age x = 65 (see Hyndman & Ullah 2007). The weights are to take care of the heterogeneity

in death rates across ages. The observational variance σt,F(x) is estimated by using a separate

penalized regression spline of {yt(x)− log[ft,F(xi)]}2 against x, for each t.

2.2 Product-ratio method for males and females

We define the square roots of the products and ratios of the smoothed rates for each sex:

pt(x) =
√
ft,M(x)ft,F(x) and rt(x) =

√
ft,M(x)/ft,F(x).

We model these quantities rather than the original sex-specific death rates. The advantage of this

approach is that the product and ratio will behave roughly independently of each other provided

the sub-populations have approximately equal variances. On the log-scale, these are sums and

differences which are approximately uncorrelated.1 (If there are substantial differences in the

variances of sub-populations, then the product and ratio will no longer be uncorrelated on the

log scale. This does not bias our forecasts, but it makes them less efficient than they would

otherwise be. In any case, our method will still be much better than treating the populations

independently as we will still be imposing coherence constraints.)

1If X and Y are two random variables, then Corr(X − Y ,X + Y ) = Var(X) −Var(Y ). So if X and Y have equal
variances, then X −Y and X +Y are uncorrelated.
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We use functional time series models (Hyndman & Ullah 2007) for pt(x) and rt(x):

log[pt(x)] = µp(x) +
K∑
k=1

βt,kφk(x) + et(x) (2a)

log[rt(x)] = µr(x) +
L∑
`=1

γt,`ψ`(x) +wt(x), (2b)

where the functions {φk(x)} and {ψ`(x)} are the principal components obtained from decompos-

ing {pt(x)} and {rt(x)} respectively, and βt,k and γt,` are the corresponding principal component

scores. The function µp(x) is the mean of the set of curves {pt(x)}, and µr(x) is the mean of {rt(x)}.

The error terms, given by et(x) and wt(x), have zero mean and are serially uncorrelated.

The models are estimated using the weighted principal components algorithm of Hyndman

& Shang (2009) which places more weight on recent data, and so avoids the problem of the

functions {φk(x)} and {ψ`(x)} changing over time (Lee & Miller 2001, p545).

The coefficients, {βt,1, . . . ,βt,K } and {γt,1, . . . ,γt,L}, are forecast using time series models as detailed

in Section 2.4. To ensure the forecasts are coherent, we require the coefficients {γt,`} to be

stationary processes. The forecast coefficients are then multiplied by the basis functions,

resulting in forecasts of the curves pt(x) and rt(x) for future t. If pn+h|n(x) and rn+h|n(x) are h-step

forecasts of the product and ratio functions respectively, then forecasts of the sex-specific death

rates are obtained using fn+h|n,M(x) = pn+h|n(x)rn+h|n(x) and fn+h|n,F(x) = pn+h|n(x)/rn+h|n(x).

2.3 Product-ratio method for more than two sub-populations

More generally, suppose we wish to apply a coherent functional method for J > 2 subpopulations.

Let

pt(x) =
[
ft,1(x)ft,2(x) · · ·ft,J (x)

]1/J
(3)

and rt,j(x) = ft,j(x)/pt(x), (4)

where j = 1, . . . , J and pt(x) is the geometric mean of the smoothed rates and so represents the

joint (non-stationary) behaviour of all subpopulations. The previous equations for males and

females are a special case of these equations when J = 2.

We can assume approximately zero correlation between the product functions pt(x) and each set

of ratio functions rt,j(x). The ratio functions will satisfy the constraint rt,1(x)rt,2(x) · · · rt,J (x) = 1.
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Our models do not include a jump-off bias adjustment (Lee & Miller 2001) as it is unnecessary

when several principal components are used. In fact, adjusting for jump-off bias may increase

the forecast bias (Booth et al. 2006).

We use functional time series models for pt(x) and each rt,j(x) for j = 1,2, . . . , J :

log[pt(x)] = µp(x) +
K∑
k=1

βt,kφk(x) + et(x) (5a)

log[rt,j(x)] = µr,j(x) +
L∑
l=1

γt,l,jψl,j(x) +wt,j(x). (5b)

It is only necessary to fit J − 1 models for the ratio functions due to the constraint — recall that

we only needed one ratio model for the two-sex case when J = 2. However, fitting all J models

will simplify the variance calculation for producing prediction intervals.

Thus, the implied model for each group is given by

log[ft,j(x)] = log[pt(x)rt,j(x)] = µj(x) +
K∑
k=1

βt,kφk(x) +
L∑
`=1

γt,`,jψ`,j(x) + zt,j(x), (6)

where µj(x) = µp(x) +µr,j(x) is the group mean and zt,j(x) = et(x) +wt,j(x) is the error term. Note

that equation (6) is equivalent to equation (15) in Hyndman & Ullah (2007). Here, we are

providing an easy and interpretable approach to estimation for this model.

2.4 Forecasts and prediction intervals

Forecasts are obtained by forecasting each coefficient βt,1, . . . ,βt,K and γt,1, . . . ,γt,L independently.

There is no need to consider vector models as the βt,k coefficients are all uncorrelated by con-

struction (see Hyndman & Ullah 2007), as are the γt,` coefficients. They are also approximately

uncorrelated with each other due to the use of products and ratios.

The coefficients of the product model, {βt,1, . . . ,βt,K }, are forecast using possibly non-stationary

ARIMA models (Shumway & Stoffer 2006) without restriction. When fitting ARIMA models, we

use the automatic model selection algorithm given by Hyndman & Khandakar (2008) to select

the appropriate model orders.

The coefficients of the ratio model, {γt,1,j ,γt,2,j , . . . ,γt,L,j}, j = 1,2, . . . , J , are each forecast using

any stationary ARMA(p,q) (Box et al. 2008) or ARFIMA(p,d,q) process (Granger & Joyeux
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1980, Hosking 1981). The stationarity requirement ensures that the forecasts are coherent.

We have found ARFIMA models useful for forecasting the ratio function coefficients as they

provide for longer-memory behaviour than is possible with ARMA models. In implementing

ARFIMA(p,d,q) models, we estimate the fractional differencing parameter d using the method

of Haslett & Raftery (1989), we use the algorithm of Hyndman & Khandakar (2008) to choose

the orders p and q, then we use maximum likelihood estimation (Haslett & Raftery 1989) and the

forecast equations of Peiris & Perera (1988). In the stationary ARFIMA models, −0.5 < d < 0.5;

for d = 0, an ARFIMA(p,d,q) model is equivalent to an ARMA(p,q) model.

Let β̂n+h|n,k denote the h-step ahead forecast of βn+h,k and let γ̂n+h|n,`,j denote the h-step ahead

forecast of γn+h,`,j . Then the h-step ahead forecast of logmn+h,j(x) is given by

log[m̂n+h|n,j(x)] = µ̂j(x) +
K∑
k=1

β̂n+h|n,kφk(x) +
L∑
`=1

γ̂n+h|n,`,jψ`,j(x). (7)

Because all terms are uncorrelated, we can simply add the variances together so that

Var
{
log[mn+h,j(x)] | In

}
= σ̂2

µj (x) +
K∑
k=1

un+h|n,kφ
2
k (x) +

L∑
`=1

vn+h|n,`,jψ
2
`,j(x) + se(x) + sw,j(x) +σ2

n+h,j(x),

(8)

where In denotes all observed data up to time n plus the basis functions {φk(x)} and {ψ`(x)},

un+h|n,k = Var(βn+h,k | β1,k , . . . ,βn,k) and vn+h|n,k = Var(γn+h,k | γ1,k , . . . ,γn,k) can be obtained from

the time series models, σ̂2
µj (x) (the variances of the smoothed means) can be obtained from the

smoothing method used, se(x) is estimated by averaging ê2
t (x) for each x and sw,j(x) is estimated

by averaging ŵ2
t,j(x) for each x. The observational variance σ2

t,j(x) is very stable from year to

year and so it is estimated by taking the mean observational variance in the historical data. A

prediction interval is then easily constructed under the assumption that the errors are normally

distributed.

Life expectancy forecasts are obtained from the forecast age-specific death rates using standard

life table methods (Preston et al. 2001). To obtain prediction intervals for life expectancies,

we simulate a large number of future death rates as described in Hyndman & Booth (2008)

and obtain the life expectancy for each. Then the prediction intervals are constructed from

percentiles of these simulated life expectancies.
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3 Empirical Studies

In this section, we will illustrate the product-ratio functional forecasting method using two

applications: male and female data for Sweden, and state data for Australia. With each ap-

plication, we compare the forecast accuracy of our method with the accuracy of independent

functional forecasts for each sub-population, based on out-of-sample forecasts. This does not, of

course, assess the accuracy of our forecasting applications, but it does provide two comparisons

of the accuracy of the coherent and independent approaches. We fit each model to the first t

observations and then forecast the death rates for the observations in years t + 1, t + 2, . . . ,n. The

value of t is allowed to vary from n1 = 20 to n− 1. Correspondingly, the forecast horizon varies

from n− 20 to 1.

The number of components, K and L, in our models is fixed at K = L = 6. It was found in

Hyndman & Booth (2008) that the forecasts are insensitive to the number of components

provided there are enough components. That is, having too many components does not degrade

forecast accuracy but having too few components does. Greenshtein & Ritov (2004) and Green-

shtein (2006) termed this phenomenon “persistence in functional linear predictor selection”. We

have found that having more than six components makes almost no difference to the resulting

forecasts.

For the jth group and forecast horizon h, we define the mean square forecast error (MSFE) to be

MSFEj(h) =
1

(n− h−n1 + 1)p

n−h∑
t=n1

p∑
i=1

{
log[mt+h,j(xi)]− log[m̂t+h|t,j(xi)]

}2
. (9)

3.1 Application to Swedish male and female mortality

Age-sex specific data for Sweden are available for the years 1751–2007 from Human Mortality

Database (2010). The data consist of central death rates and mid-year populations by sex and

single years of age to 110 years. We group the data at ages 100 and above in order to avoid

problems associated with erratic rates at these ages. We restrict the data to 1950–2007, but this

has minimal effect because the weighted fitting procedure gives greater weight to recent data.

Figure 1 shows log death rates for males and females for selected age groups as univariate time

series. The bottom panels represent the same data as a series of smoothed curves (functional

observations). We use rainbow plots (Hyndman & Shang 2010) with the time ordering of curves

indicated by the colors of the rainbow, from red to violet. For females, mortality has declined
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Figure 1: Top: Log death rates for males and females in Sweden for various ages as univariate
time series. Bottom: Smoothed log death rates for males and females in Sweden viewed as
functional time series, observed from 1950 to 2007. Penalized regression splines with a partial
monotonic constraint (Hyndman & Ullah 2007) are used for smoothing.

steadily at most ages. For males, however, the decline stagnated at most adult ages in the 1960s

and early 1970s. In recent years, male and female mortality at ages 20 and 30 are no longer

declining, and small numbers of deaths result in relatively large fluctuations at age 10.

Figure 2 shows the product function (on the log scale) and the ratio function of observed rates.

The product function is the geometric mean of smoothed male and female rates; while in general

this mean declines over time, recent increases are observed at ages 15 to 30, and at ages 1 to 5.

The ratio function is the square root of the sex ratio of smoothed rates. Sex ratios of less than
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Figure 2: Product and ratio function of the coherent functional model for Swedish data (1950–
2007).

one occur where small numbers of deaths result in large random variation — at very young

ages in recent years and at very old ages in earlier years. Since the 1980s, the ratio function has

declined at ages 40 to 80, and more recently for older ages. In recent years, large fluctuations

occur at ages less than 10 and at 20 to 30.

Figure 3 show the basis functions and corresponding coefficients with thirty year forecasts,

produced by applying functional time series models to the product and ratio functions. In the

product model, the first principal component shows a declining trend in mortality, which is

fastest at childhood ages and slowest at about age 20 and at very old ages. This term alone

accounts for 97.0% of total variation. In the ratio model, the first principal component shows

if anything a downward trend, but after 1990 fluctuations are substantial. This term accounts

for 57.9% of total variation; the second and third terms account for 15.8% and 8.5% of total

variation respectively. No cohort effects or other age patterns were observed in the residuals

(i.e., one-step forecast errors) for the models.

Figure 4 shows thirty-year forecasts for sex ratios of male and female death rates using the

coherent functional model and using independent functional time series models for separate

male and female rates (following the approach of Hyndman & Booth 2008). The coherent
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Figure 3: Top two rows: The first three basis functions and the corresponding coefficients
of the product model for Swedish data along with thirty-year forecasts and 80% prediction
intervals using ARIMA models. These components explain respectively 97.0%, 1.4% and 0.5%
of the variation in the historical data. Bottom two rows: The first three basis functions and the
corresponding coefficients of the ratio model for Swedish data along with thirty-year forecasts
and 80% prediction intervals using stationary ARFIMA models. These components explain
respectively 57.9%, 15.8% and 8.5% of the variation in the historical data.
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Figure 4: Thirty-year forecasts of mortality sex ratios in Sweden using coherent and independent
functional models.
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Figure 5: Thirty-year life expectancy forecasts for males and females in Sweden using coherent
models (solid lines) and independent models (dotted lines). Blue is used for males and red for
females.
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Figure 6: Forecast accuracy of coherent and independent models for different forecast horizons,
showing out-of-sample MSFE of log death rates.

model produces sex ratios that are greater than one at all ages and remain within the limits

of the observations on which they are based. In contrast, the independent models produce

forecast sex ratios that are less than one at childhood ages and exceed the limits of observation

at approximately ages 25 to 30 and 75+.

Thirty-year life expectancy at birth forecasts by sex are shown in Figure 5, along with the sex

difference in forecast life expectancy at selected ages. The forecasts based on independent models

(dashed lines) are diverging, a feature that goes against recent trends, and leads to sex gaps in

life expectancy at older ages that exceed observation. In contrast, the sex differences embodied in

the forecasts based on the coherent method continue to decrease, and all tend towards positive

differentials (see Section 4.2). Thus, the coherent method produces sex differentials in both

death rates and life expectancies that are in keeping with the levels and trends of the last 30

years.

The prediction intervals for life expectancies shown in Figure 5 are obtained from the percentiles

of simulated life expectancy values, which in turn are obtained from simulated future death rates

as described in Hyndman & Booth (2008). A feature of this method is that it takes account of

the nonlinear relationship between age-specific death rates and life expectancy, thus producing

asymmetric intervals.

To examine forecast accuracy, Figure 6 shows out-of-sample MSFE values of log death rates

based on equation (9). It is seen that both the coherent and independent models are more
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accurate for female than for male mortality, but that this sex difference is much smaller in

the coherent case. The coherent model is more accurate than the independent model for male

mortality, but less accurate for female mortality. The better performance for male mortality is

attained at the expense of accuracy for female mortality, resulting in greater similarity in the

degree of forecast accuracy for the two sexes. In overall terms, the coherent method performs

marginally better (an average MSFE of 0.259 compared with 0.264 for the independent models).

Thus, achieving coherence has not resulted in a reduction in overall accuracy.

3.2 Application to Australian state-specific mortality

In the second application, we consider the six states of Australia: Victoria (VIC), New South

Wales (NSW), Queensland (QLD), South Australia (SA), Western Australia (WA) and Tasmania

(TAS). The Australian Capital Territory and the Northern Territory are excluded from the

analysis due to a large number of missing values in the available data. For each state, age-specific

death rates and corresponding populations for 1950 to 2003 are obtained from Hyndman (2008).

The ranking of life expectancy by state has changed over the fitting period; by 2003 the highest

life expectancy occurred in Western Australia and Victoria and the lowest (by a margin of more

than one year) in Tasmania.

Figure 7 shows the first three basis functions of the product model and their coefficients along

with thirty year forecasts. The first principal component of the product model accounts for

96.5% of total variation. The first three principal components of the ratio model for Victoria are

plotted in the bottom panels of Figure 7. The first term accounts for 37.0% of total variation, the

second accounts for 13.5% and the third for 9.2%. For other states, the first term accounted for

between 28.7% and 52.1% of the total variation. (Ratio models for other states are not shown.)

No cohort effects or other age patterns were observed in the residuals for the models.

Figure 8 shows thirty-year life expectancy forecasts by state produced by the coherent and

independent models. The life expectancy forecasts from the independent models are diverging,

whereas the forecasts from the coherent model are more constrained. For the coherent forecasts,

the ranking of the six states changes over the forecast horizon, though Western Australia

and Tasmania maintain their 2003 positions as highest and lowest respectively. The overall

differential between the highest and lowest forecast values and the differentials between states

are consistent with observation.
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Figure 7: Top two rows: The first three basis functions and their coefficients for the product
model given in (5a) for all states of Australia. Forecasts and 80% prediction intervals were
obtained using ARIMA models. These components explain respectively 96.5%, 1.6% and 0.5%
of the variation in the historical data.
Bottom two rows: The first three basis functions and their coefficients for the VIC ratio model
given in (5b). Forecasts and 80% prediction intervals were obtained from ARFIMA models.
These components explain respectively 37.0%, 13.5% and 9.2% of the variation in the historical
data.
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Figure 8: Top row: Thirty-year life expectancy forecasts for Australian states using the coherent
and independent functional models.
Bottom: Forecast accuracy of coherent and independent models showing out-of-sample MSFE
of log death rates for Australian states.
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Figure 8 shows out-of-sample MSFE values using coherent and independent models for the

Australian state data. The coherent model is more accurate at all horizons for four of the six

state forecasts (the greatest loss of accuracy is for New South Wales). The increase in accuracy

is greatest for Tasmania, which might be regarded as an outlier by 2003. On average, the

coherent model performs slightly better (average MSFE of 0.325 compared with 0.346 for the

independent models).

4 Discussion

In this paper, we have proposed a new method for coherently forecasting the age-specific

death rates of two or more sub-populations. The product-ratio functional method is based on

functional forecasting of simple functions of the products and ratios of the sub-population

death rates, rather than the rates themselves. Using two-sex data for Sweden and six-state data

for Australia, we have demonstrated the coherence of our results, while also demonstrating that

the coherent method is at least as accurate in overall terms as independent forecasts.

4.1 Product-ratio method

The use of products and ratios is a simple and interpretable way of imposing coherence on the

forecasts. The product function represents the geometric mean of sub-population death rates —

a version of the familiar mortality schedule. The ratio function is the ratio of the death rates

of a particular sub-population to the geometric mean rates; in the two-sex case, this is simply

the square root of the sex ratio (and its inverse). Being a relative measure, the ratio function is

easily understood and has the advantage of direct comparability over age (Figure 2).

The use of the product and ratio functions also greatly simplifies the modelling procedure

compared with the direct use of rates because the two functions are uncorrelated. The resulting

model is elegant in its simplicity. The new method ensures coherence in terms of long-term

trends in forecast rates and produces results that remain within the observed range of variation

for mortality ratios of sub-populations. The product-ratio method can handle outliers; in such

cases the ratio function is larger than for other sub-populations and may have a different age

pattern, but the forecast ratio function is kept within observed bounds.

A limitation of the product-ratio method is that the long-term forecasts of the ratio function

will converge to the age-specific mean ratios, which are determined by the choice of fitting
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period. We address this limitation in two ways. First the functional model that we employ

incorporates weights that give greater weight to recent data (Hyndman & Shang 2009), so the

long-term forecasts will converge to approximately the weighted mean ratios which are largely

immune to the earliest data, increasing their relevance to the future. (In our applications we

use a weight parameter of 0.05 which has the effect of giving weight 0.0500 to the most recent

data, 0.05(0.95) = 0.0475 to the year before, 0.05(0.95)2 = 0.0451 to the year before that, and

so on.) However, we acknowledge that the weighted mean ratios may not be optimal at all

ages and in all cases. Second, we use ARFIMA models for the coefficients of the ratio function;

these models converge very slowly to the mean of the historical values of the coefficients. Tests

were conducted to evaluate the possibility of basing the ratio function on a shorter fitting

period, while maintaining the longer fitting period for the product function; this made almost

no difference to average MSFE values, but destabilised the ratio forecast. The price of slow

convergence using ARFIMA models is that a longer data series is needed for stable estimation.

The full fitting period was therefore used for both functions. The use of the longer period for

the ratio function may also be justified on conceptual grounds in that coherence implies that

the subpopulation ratios are stochastically stable over time (that is, the age-specific ratios are

assumed to be stationary).

An important advantage of the product-ratio method is greater flexibility in the age pattern of

change in forecast mortality. When the product and ratio functions are combined to produce

sub-population death rates, the age pattern of mortality embodied in the product function is

modified in accordance with the age pattern of the ratio function. Where the ratio function is

close to 1, there is little modification of the geometric mean death rate; where the ratio function

differs from 1, the geometric mean rate is significantly modified (by multiplying by the ratio).

The forecast product function is typically governed by an almost constant age pattern of change,

because of a dominant first principal component. In contrast, several principal components are

typically required to model the more complex ratio function, producing a variable age pattern of

change over time. This variable pattern of change in the ratio function provides flexibility in the

age pattern of change in mortality forecasts. The product-ratio functional approach thus allows

for greater flexibility of change over time than the independent functional approach. Further,

even if using only one principal component to model the product and the ratio functions — and

hence fixed patterns of change for both — the product-ratio approach would allow flexibility

of change in forecast mortality. The new approach allows for evolving ratios among forecast
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sub-population rates (for example, sex ratios of forecast rates); this is in contrast to the Li and

Lee approach where the ratios remain fixed over time (Li & Lee 2005, p582).

4.2 Coherence

The terms ‘non-divergent’ and ‘coherent’ have previously been used interchangeably (Li & Lee

2005). In developing the product-ratio method, we have more precisely defined coherence

to be the convergence of the ratios of the forecast age-specific death rates from any two sub-

populations to appropriate constants. In this paper we have used weighted historic mean ratios

as the constants, but other values including theoretically-derived values could be used instead.

Coherence is the essential feature of the product-ratio method, and is ensured by the convergence

of the ratio function to constant age-specific ratios. In the two-sex case, eventually-constant

ratios are in keeping with their biological basis (Kalben 2002). In the multi-state case, the

approach may be regarded as conservative in that constant ratios imply equal rates of mortality

improvement in the long term.

Convergence to constant ratios does not imply that mortality differences between sub-

populations tend to a set of constants. Trends in forecast differences depend on both the

ratio and product functions. Only if both the forecast ratio function and forecast product

mortality were constant, would sub-population differentials be constant. The forecast ratio

function typically increases at some ages and decreases at others; the net effect is that differences

in life expectancy may be convergent or divergent. As the ratios converge to their historic means,

their ability to effect change diminishes. For constant ratios, changing product death rates

produce differences between sub-populations that change at the same rate as product mortality.

Thus, change in product mortality governs whether and how differentials converge or diverge in

the long term. Convergence is constrained by the level of mortality and would occur only when

death rates reach zero. Divergence and constant differences are similarly constrained, and for

most populations are unlikely to be forecast given observed mortality trends.

For life expectancies at different ages, the age pattern of the mean ratios also influences forecast

trajectories. This may result in widening differentials in life expectancy at certain ages even

when mortality is declining at all ages. Thus, while forecast death rates are constrained to tend

towards a defined relative differential, forecast life expectancies are less precisely constrained.
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Figure 9 shows results for four additional populations (the US, Canada, UK and France),

illustrating a range of outcomes. In all cases, the sex gap in forecast life expectancies from the

coherent model is well-behaved over both time and age.

Figure 9: Differences in life expectancy forecasts for males and females (F–M) for 2008–2037
using coherent models (solid lines) and independent models (dotted lines).

4.3 Forecasts

The results for Sweden show a life expectancy at birth in 2037 of 86.4 years for females and

82.9 years for males. The forecast sex gap decreases from 4.0 years in 2007 to 3.5 years in

2037. Similarly for life expectancy at all other ages, the forecast sex gap decreases with slow

convergence towards positive values.

The forecast life expectancies at birth in 2037 imply average annual increments of 0.113 years

for females and 0.138 years for males. These are less than the average annual increments over

the fitting period, implying deceleration in the rate of increase. For females, deceleration is
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in fact observed over the fitting period (Figure 5), and is continued in the forecast. Bengtsson

(2006) notes that deceleration has been a recent feature of several formerly leading countries of

female life expectancy. For males, the linear trend since 1980 in observed life expectancy is not

continued in the forecast.

While approximate linearity has been observed in the recent life expectancies of developed

countries (White 2002), it is also the case that approximate linearity is observed in the coefficient

of the first principal component of models of death rates (Lee 2006). When linearity is continued

in the forecast of the coefficient, it does not produce linearity in forecast life expectancy. The

main reason for this is that the principal component model assumes a fixed age pattern of

change, whereas life expectancy takes into account the fact that the age pattern of change varies

over time (Booth et al. 2002b). This is illustrated in Figure 10 for Swedish female mortality. The

pessimistic forecast is based on a functional model using a single principal component with

linear coefficient, and hence a fixed age pattern of change. The optimistic forecast is a random

walk with drift model of life expectancy. This latter model is heavily dependent on the fitting

period, and in particular on the first year of the fitting period. If we were to discount the first

few years of the fitting period, when the trend is particularly steep, a more gradual increase in

forecast life expectancy would result, but this would still be greater than the increase embodied

in the single principal component model.

In the Swedish example, several additional interconnected factors contribute to the relatively

slow and diminishing increase in forecast life expectancy. Change in the product function,

which is the main determinant of the trend in forecast male and female life expectancies, is

more closely linear than in either male or female mortality (as determined by the independent

models). This contributes to the result that linear change (the first principal component seen in

Figure 3) accounts for the very high percentage of variability after smoothing, which means that

the functional forecast of the product term is effectively based on the single linear principal

component, and the age pattern of change is fixed. Thus the forecast of product function

mortality embodies a deceleration in the increase in life expectancy.

When there is almost total dominance of the first principal component in the product model, the

forecast trend can be heavily dependent on the fitting period (especially if a random walk with

drift model is used, which depends totally on the first year and last year of the fitting period).

In the Swedish example, the ARIMA(0,1,1) model (with drift) used for the first coefficient

somewhat reduces this dependence by giving extra weight to more recent years. Further, we
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Figure 10: Forecasts of Swedish female life expectancy at birth from a random walk with drift
model applied directly to life expectancy data (red line) and a single principal component with
linear coefficient (blue line).

have used weighted functional methods to give greater weight to the more recent data and

reduce dependence on the particular fitting period; however, this has little effect in the Swedish

example because of linear change in the product function over the fitting period (Figure 3).

In other work, we have found the first principal component to account for about 94% of

variation (Hyndman & Booth 2008), allowing some influence of the second and higher principal

components in the forecast. The main effect of the additional principal components is to modify

the age pattern of change embodied in the first principal component, so that the overall age

pattern of change is not fixed. This has the effect of modifying the annual increments in forecast

life expectancy.

For Sweden, the ratio model allows for greater flexibility over time in the age pattern of change.

For example, one effect of the first principal component is the “shifting” of the primary mode of

the ratio function to slightly older ages over the course of the fitting period, while the second

component is largely responsible for the increase and then decrease in the secondary mode and

also contributes to shifting it to older ages. At the oldest ages, there is little movement over

time. In the forecast, the shifts are reversed because the pattern of change tends towards the

weighted mean ratio function, but there is relatively little movement over the forecast horizon.
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At childhood ages, the forecast involves an increase in the ratio — in other words, female rates

are declining faster than male, and the female advantage is increased. At young adult ages

(roughly 20 to 30), this trend is reversed — the female advantage is reduced. Very little change

is forecast at about ages 30 to 45. At about ages 45 to 70, the female advantage is increased,

while at older ages it is slowly reduced over time in line with recent trends whereby the male

mortality disadvantage has diminished.

When the forecast ratio functions for male and female mortality are applied to the forecast

product function, the resulting life expectancies are not equidistant from geometric mean life

expectancy. Two factors contribute to this result. First, though symmetric on the log scale, the

sex ratio and its inverse are asymmetric in their effects on product death rates: the larger effect

occurs for males. Second, the effect of a constant ratio is greater for lower death rates. Both

factors produce a greater difference from geometric mean life expectancy for male mortality

than for female mortality. However, these differences are slight and the main determinant of the

trends in male and female forecast life expectancy is the forecast of geometric mean mortality. In

the Swedish example, this explains why male forecast life expectancy decelerates more rapidly

than does female life expectancy.

The forecast life expectancies for Australian states show slow convergence of some pairs of

states and slow divergence of others. Several trajectories intersect, for example NSW and

Queensland. These results are the outcome of the combined influences of overall mortality

decline, convergence of age-specific ratios to constant means, and the age pattern of these means,

as discussed above. The average forecast rate of increase is less than the observed average.

As in the case of Sweden, the dominant first principal component of the product function (a

linear coefficient with fixed age pattern of change) produces slightly convex forecasts of life

expectancy.

4.4 Forecast accuracy

It has been shown that the product-ratio functional method ensures coherence without com-

promising the overall (average) accuracy of the forecasts. In the two-sex case, the accuracy

of the male mortality forecast was improved at the expense of accuracy in female mortality

forecast; in other words, by adopting the coherent method, the accuracy of the forecasts for

the two sexes was (partly) equalised. Similarly in the six-state example, forecast accuracy is

more homogeneous in the coherent method, with an improvement in overall accuracy. This
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feature of the method is useful in practical applications such as population forecasting, where

it is preferable to maintain a balanced margin of error and hence a more balanced forecast

population structure than might occur in the independent case. Similarly in financial planning,

it may be preferable to accept moderate error in all sub-populations rather than risk a large

error in one sub-population.

Coherent forecasting incorporates additional information into the forecast for a single sub-

population. The additional information acts as a frame of reference — limiting the extent to

which a sub-population forecast may continue a trend that differs from that of trends in related

sub-populations. A similar approach has previously been adopted by Ortega & Poncela (2005)

in forecasting fertility, as well as by Li & Lee (2005) for mortality.

The use of additional information raises the question of the choice of information. How

important is it that the sub-populations be appropriately chosen? In the two-sex case, where

data for both females and males are used to forecast mortality for each sex, the choice is

pre-determined. Similarly, there is little doubt about the appropriateness of geographic sub-

populations of a country. The grouping of several countries, however, is less clear (Li & Lee

2005). We note that the ‘outlier’ state of Tasmania has been successfully forecast, and similar

results can be expected for countries that might be considered outliers in a larger region. The

product-ratio method is relatively insensitive to the composition of the product function because

of the simpler orthogonal relationship between the product and ratio functions (compared with

the more complex correlated relationship between the group and individual rates used by Li

and Lee).

Evidence suggests that the product-ratio functional method may produce more accurate forecasts

than other methods. The evaluations of Booth et al. (2006) show that the functional data model

of Hyndman & Ullah (2007) produces more accurate forecasts of death rates than the Lee-

Carter method and its variants in 13 out of 20 populations. In this research we have used an

improved functional data model which incorporates weights (Hyndman & Shang 2009), and

has been shown to produce more accurate forecasts than any other method based on a principal

components decomposition including the Lee-Carter variant used by Li and Lee (Shang et al.

2011). To compare our results for Sweden with those of Li & Lee (2005) we extended our

forecasts to 2100: the product-ratio method produced a sex gap in life expectancy at birth of

2.2 years compared with 3.0 years by the Li-Lee method. Forecast life expectancy in 2100 was

91.3 years for females and 89.1 years for males, compared with approximately 93 and 90 years
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respectively from Li & Lee (2005). Further research is needed to fully evaluate methods for

coherent mortality forecasting.

4.5 Generalisation of the Li-Lee method

The product-ratio functional method can be viewed as a generalisation of the Li & Lee (2005)

approach. Li & Lee (2005) employed the following model, expressed here for the two-sex case

using notation consistent with that used in Section 2:

yt,j(x) = µj(x) + βtφ(x) +γt,jφj(x) + et,j(x) (10)

where j ∈ {F,M}, βt is a random walk with drift, φ(x) is the first principal component of the

common factor Lee-Carter model (based on combined male and female data), γt,j is an AR(1)

process, φj(x) is the first principal component of the residual matrix of the common factor

model, and et,j(x) is the error. The residual matrix is based on βt after adjustment to match

annual life expectancy (Lee & Miller 2001). Coherency is achieved by modelling γt,j as an AR(1)

process.

There are several points of difference between Li & Lee (2005) and the product-ratio functional

method. First, Li & Lee (2005) use a single principal component in each model, while we use

up to six (Hyndman & Ullah 2007) — though in practice only the first two have much effect

for mortality. The additional principal components capture patterns in the data thatwhich are

supplementary to the main trend and which may be significant. Booth et al. (2006, Table 3)

showed that methods involving additional principal components were at least as accurate in 16

of 20 populations. The incorporation of additional principal components has the advantage that

modelled death rates are no longer perfectly correlated across age (which is a feature of single

component models). The use of the multiple principal components does not add significantly

to the complexity of the model because the γt,` coefficients (` = 1, . . . ,L) are uncorrelated by

construction; there is thus no need to employ a vector approach.

Second, Li & Lee (2005) restrict the time series models to a random walk with drift for βt and

an AR(1) process for γt,j , whereas we allow more varied dynamics to be modelled through

more general ARIMA processes for each βt,`, ` = 1, . . . ,L and any stationary ARMA(p,q) or

ARFIMA(p,d,q) process for eachγt,`, ` = 1, . . . ,L. Third, in the Li & Lee (2005) approach, the

γt,j coefficients are highly correlated with each other (over j), necessitating a vector approach
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(Reinsel 2003) for modelling the γt,j coefficients, which adds considerably to the complexity of

the method.

Finally, by modelling yt,j instead of ft,j , the Li & Lee (2005) model includes observational error

which will be propagated in the forecasts. In the functional approach, observational error is

removed by smoothing and added back in after modelling as part of variance estimation.

Thus the Li & Lee (2005) model can be considered a special case of the more general product-

ratio functional method — the case where there is no smoothing, each model has only one

component, and the time series models used are either a random walk with drift or a first order

autoregression.

4.6 Extensions and practical application

A possible extension of the method would be to incorporate two or more dimensions in defining

the product, so as to obtain coherency between and within each dimension; for example, sex and

state might be used to coherently forecast male and female mortality within state, and mortality

by state within each sex. A further possible but less elegant extension is the use of an external

standard mortality schedule in place of the product, combined with ratios of sub-populations to

this standard. This option may be useful where data for the appropriate group are missing. Best

practice mortality (Oeppen & Vaupel 2002) may provide a useful standard. Further research is

needed to examine these possibilities in greater detail.

Finally, it should be acknowledged that the development of improved forecasting methods for

mortality, and by extension for fertility and migration (Hyndman & Booth 2008), represents

a step towards more reliable and more easily automated demographic forecasting and the

acceptance of these stochastic methods by national statistical offices responsible for producing

official population projections. Though more complex than traditional methods, these methods

are easily accessible through user-friendly code now available on CRAN (Hyndman 2010).

Application of the methods is considerably simplified by this free software.
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