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Abstract 

We present a new method for estimating the length of the invasion lag phase from simple 

time series of counts of herbarium records.  This is based on annual rather than cumulative 

data, a generalized linear model incorporating a log link for overall collection effort, and 

piecewise linear splines.  We demonstrate the method on two species representing good and 

poor data quality, then apply it to two data sets comprising 448 species/region combinations. 

Significant lags were detected in only 28% and 40% of time series, a much lower level than 

the 95% and 77% found in previous analyses of the same data.  In a case with high quality 

data, a lag was concluded even though during the “lag” the locations of herbarium collections 

indicated that it was spreading rapidly at a continental scale.  In species with few records, 

results were sensitive to the way in which zeroes were included.  Given the poor 

representation of herbarium samples in the early stages of invasions and the fact that they do 

not constitute a structured survey of abundance, we warn against over-reliance on statistical 

analysis of such data to reach conclusions about the dynamics of invasions. 

 

Synthesis 

It is a widely held view that invasive species commonly undergo a lag phase prior to a more 

rapid phase of expansion.  This conclusion, however, is not based on a systematic analysis of 

data.  A previous method of estimating the length of the lag phase from herbarium data, based 

on unrealistic statistical and model assumptions, concluded that lags occurred in the majority 

of species. Our new method overcame these methodological problems and led to the 

conclusion that statistically significant lags only occurred in a much smaller proportion of the 

cases previously analysed.  While statistics can help to separate facts from artefacts, the 

reality is that any method – including ours - relies on the validity of its assumptions: 

inappropriate assumptions can themselves introduce artefacts.  Despite the temptations 

introduced by the easy accessibility of herbarium databases, herbarium data are mostly 

inadequate for the estimation of the lengths of invasion lag phases. 
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It is an almost universal belief amongst invasion ecologists that there is often a lag phase in 

the dynamics of an invasion.  During this phase, a species undergoes only slow or negligible 

range expansion and population growth; a period of more rapid expansion then follows.  

Discussions of invasion dynamics vary in their interpretation of the ubiquity of the 

phenomenon, from “some species” (Frappier et al. 2003), “often/in many instances” (Mack et 

al. 2000, Lenda et al. 2011), “commonly/generally” (Parker 2004, Pysek 2005), to “most” 

(Radosevich 2007) or all (implied by the use of the term “there is a lag phase”: Dogra et al. 

2010).   

There are many plausible reasons why a lag phase might occur.  Given that rate of population 

spread is the product of dispersal and population growth rate (Kot et al. 1996), the change 

from a low or negligible rate of increase to a much greater one must necessarily involve a 

change in either, or both, of these factors.  Causes postulated in the literature include: 

• A threshold period before the founders are physiologically able to reproduce; 

• A threshold population size below which pollination/reproduction is inefficient; 

• Abiotic habitat change (e.g. climate change, altered land management, novel elements 

introduced into landscape, extreme events such as fire or tornado); 

• Biotic habitat change (e.g. loss of herbivore, competitor or predator; introduction of 

pollinators or mycorrhizae); 

• Long period required to evolve genotypes more suited to alien habitats (due to genetic 

bottleneck); 

• Chance introduction of additional genotypes that are either more fit or allow novel, 

fitter recombinations to be selected; 

• Introduction of the opposite sex (in dioecious species); 

• Dispersal across a localised barrier, around the location of introduction, into a larger 

region of suitable habitat (perhaps because population size had to build up to achieve 

significant propagule pressure); 

• After a slow initial spread because of poor dispersal, reaching a location in which 

additional, long-distance dispersal vectors become available. 

Direct evidence linking a particular invasion to a given mechanism (e.g. Wangen and 

Webster 2006) is, however, rare.   
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Some have argued that the early part of an exponential increase in population 

extent/abundance is, in essence, another type of lag phase (an “inherent” lag phase, Crooks 

and Soulé 1999) because it is a period where the species is still highly restricted and the rate 

of invasion increases as population size grows.  Indeed, authors sometimes draw arrows on 

graphs where the exponential is clearly an excellent fit, indicating the putative end of a lag 

phase (Cousens and Mortimer 1995).  Mathematically, this is misleading: the absolute rate of 

increase grows steadily, rather than step-wise, and the per capita rate of increase of an 

exponential is constant.  Thus it can be argued mathematically that there is no lag phase if 

population growth is exponential: it is merely an optical illusion. 

There are highly documented instances in which the limited data are persuasive in arguing for 

the existence of a prolonged lag phase before the main invasion occurred.  This has led to an 

interest in measuring the lengths of lags.  Where there is documentary evidence for the date 

of first deliberate planting, it is common to take the lag phase as being the time between then 

and when it is first reported to have established away from the origin (Kowarik 1995).  Using 

this method, lag phases appear to be common and lengthy (a mean of 147 years for woody 

species in one study: Kowarik 1995).  The results from another study, with a finer scale of 

observation than most others, led to the hypothesis that lags are inherently shorter in the 

tropics (Daehler 2009).  Such estimates are, however, always problematic: the data are 

censored, as we only observe that the lag has ended after the event has occurred (Daehler 

2009), and often we do not know the date of introduction, only the date of first observation, 

which may be decades later.   

This also highlights a more general problem, that data during the lag phase (if indeed one 

exists) are either absent or extremely sparse.  We seldom target species invasions for study 

until after they have started to spread actively.  Moreover, the number of observers/collectors 

(and hence the probability of being collected) was very low during the historical periods 

when our current major invaders were just establishing themselves (Fig. 1).  This means that 

it is very difficult to distinguish statistically between a true lag phase and the early parts of a 

rapid (e.g. exponential) increase (Cousens and Mortimer 1995). An absence of data between 

the first occurrence and the start of the rapid increase phase will mean that regression models 

incorporating a lag phase appear to fit extremely well, simply because there are no data to 

indicate lack of fit in that region (e.g. Larkin’s 2010 Fig 2b).  Cousens and Mortimer (1995) 

also pointed out that it is common for observation “effort” to increase once a species has been 
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identified as an issue, inflating the apparent rate of increase and introducing phase changes 

where they may not exist. 

Notwithstanding these potential problems, ecologists would still like to determine, in a given 

case, whether there is evidence that a lag phase exists and, if so, to estimate its length with as 

much accuracy as possible.  Herbarium data, increasingly available in digital format, allow us 

to attempt to reconstruct invasion histories (e.g. Rodman,1985; Cousens et al. 2013), to 

determine periods of species influx (e.g. Fuentes et al. 2008), eventual invasion extents (using 

species distribution models based on climate: e.g. Webber et al. 2011) and invasion niche 

shifts (Gallagher et al. 2010).  Aikio et al. (2010) estimated the end of the lag phase as the 

point of intersection between two regression lines relating cumulative number of herbarium 

specimens and time (the first use of this method appears to be by Pyšek and Prach 1993, 

although few details are given).  Thus, rate of increase of a species in herbaria was used as a 

surrogate for abundance and/or the size of the invaded area.  Prior to cumulation, the number 

of specimens was detrended for temporal variation in overall invasive species collection 

effort  (assumed to be proportional to the number of herbarium samples), which would 

otherwise bias inferences about invasion rates.  The method was repeated by Larkin (2012): 

both studies concluded that lag phases were common, statistically significant in at least 95% 

and 77% of cases respectively for which there were sufficient data (defined as >15 herbarium 

specimens). 

Aikio et al.’s (2010) method aims to separate true lag phases from artefacts of the data and to 

give an accurate estimate of the length of the lag phase.  However, their analysis relies on 

fitting statistical models.  Models, even ones that appear to fit the data well, are abstract 

representations of reality: if the model is inappropriate or makes implausible assumptions, 

then it is quite possible that the statistical analysis will itself produce artefacts and give 

incorrect estimates/inferences (either within or outside the range of the data). 

There are, however, both statistical and logical problems with Aikio et al.’s (2010) method.  

First, the use of cumulative data in a least squares regression makes the statistically 

unrealistic assumptions that residuals are independent and that the variance is homogeneous.  

Because the next observation is added to the previous one, the errors in the first observation 

contribute to errors in the second, and so on.  As the cumulative number becomes larger, so 

will the variance.  Both of these assumptions will lead to incorrect estimates of error and 

hence may result in incorrect statistical inferences: for example, the use of cumulative data 
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can underestimate the true standard errors considerably (Mesgaran et al. 2013).  Aikio et al. 

(2010), unlike Larkin (2012), made no attempt to estimate the confidence intervals in their 

lag time estimates, though both studies compared the fit of models with/without lag phases 

statistically using the Akaike Information Criterion (AIC). Again, two of the assumptions 

implicit in using the usual AIC for regression models — that the errors are both independent 

and homoscedastic — are clearly inappropriate with these cumulative models. Another 

implicit assumption of using cumulative data is that all occasions of zero records in a year are 

true estimates of abundance, rather than missing values.  If there are no new specimens of any 

exotic species collected for that year, this could have arisen because no effort was put into 

collecting exotic species in general, rather than because the target species was too low in 

abundance to have been collected: a zero therefore may indicate a complete absence of 

information rather than a failure to find the species in a structured survey. Of course, an 

absence of new records for the focal species could also have occurred because no botanists 

interested in exotics visited its habitat and current location in that year, again indicating that it 

may be more  appropriate to treat that year as a missing value.  Larkin (2012) also noted that 

lag lengths were correlated with the date of first appearance of the species and interpreted this 

as being because, for short time series of recently introduced species, insufficient time would 

have passed for long lags to have ended.  However, it may also indicate that even after 

correction for temporal variation in sample collection rate, the lower historical sampling 

frequency may exaggerate the length of the lag phase.   

Second, the equations that they fit, though appearing to describe the cumulative data 

reasonably well, make some unlikely assumptions if the data are being used to measure the 

progress of the invasion.  The four models fitted by Aikio et al. (2010) all assume that there is 

a sudden jump in specimen collection rate (even after adjustment for changes in collection 

effort) immediately the lag phase ends (Fig 2a-d).  If collection rate is simply proportional to 

the abundance or distribution of the species (a fundamental assumption in this use of 

herbarium data to estimate lag phases), the rate of collection an infinitesimally short time 

after the end of the lag phase should barely change: the species will still be at a very low 

abundance even though increasing more rapidly (Fig 2e).  There would only be a sudden 

jump in collection rate if collector behaviour changed (rather than rate of spread/population 

increase), for example as a result of the recognition of the species as an increasing threat that 

needs to be monitored (Cousens and Mortimer 1995), or if the species was spread throughout 

a region in a single dispersal event acting over a very short period.  Two of the models – the 
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ones that provided the best fit to the data in both Aikio et al. and Larkin’s studies – also 

assume that once a species reaches its greatest abundance, the annual rate of specimen 

collection will fall to zero (Fig 2a,c).  This would only be the case if collectors completely 

lost interest in the species for some reason and not because the species stops increasing.  

Herbarium specimens, however, are often collected as part of plant community or regional 

surveys, so that it is unlikely that collection would ever stop completely. 

The aim of this paper is to propose a statistical method, based on annual collection rates 

rather than cumulative specimen number, making more appropriate assumptions about the 

data.  The method also avoids the assumptions implicit within the regression models used 

previously.  We apply our method to an example taken from a database representing the 

combined collections of the major herbaria in Australia.  We then compare our results with 

previous studies of smaller data sets. 

Material and Methods 

Data.  We illustrate our method in detail using two species: Cakile maritima in Australia, a 

coastal species that we have studied closely (Cousens et al. 2013) and represented by 603 

specimens; and Holcus lanatus in the South Island of New Zealand, a species estimated to 

have a long lag phase by Aikio et al. (2010) but represented by only 50 specimens.  We then 

reanalysed the entire data sets used by Aikio et al. (2010) and Larkin (2012) for the north and 

south islands of New Zealand and the Midwest US respectively. For C. maritima, we 

accessed data from the Australian Virtual Herbarium (AVH), a database combining the 

records of all major Australian herbaria.  Total number of invasive specimens collected per 

year was obtained from the AVH data by filtering with a species list of Australian alien plants 

supplied by R. P. Randall.  Duplicate specimens (same location, same collector, same year) 

were removed.  Although the New Zealand and US data sets cover a restricted geographic 

region and thus, in theory, may be able to focus on invasions as they first occur at a local 

level, they will also be highly limited in statistical power due to the restricted number of 

samples.  Aikio et al. (2010) and Larkin (2012) included data sets with as few as 15 

specimens, often spread over many decades.  In such cases, it is quite possible for the most 

parsimonious model to be biologically inappropriate due to high residual variance or large 

gaps in collection: as we have discussed, in the lag phase and the early parts of a phase of 

more rapid increase, the data will be of extremely poor quality even in large data sets and 

even if later phases are well-defined.   
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Methods of Analysis.  Instead of analysing cumulative data, we analysed the number of 

herbarium specimens collected in each year (𝑛𝑡), as a measure of the collection rate.  As the 

abundance or distribution of a species increases, so will the probability of a sample being 

collected.  We assume that 𝑛𝑡 is Poisson distributed.  The use of herbarium records as a 

surrogate for abundance or distribution relies on an assumption of constant sampling effort.  

Clearly, this is not the case.  The number of collectors (Fig. 1), the general collection 

strategy, attitudes towards aliens (in some periods some herbaria did not welcome collections 

of “weeds”, while at other times there have been deliberate changes in policy to focus 

temporarily on invasives), changes in collection effort for the focal species, and other factors 

together affect the probability of a species sample being collected.  We therefore used the 

total number of samples of alien species collected in that year (𝑁𝑡) as a term in the following 

model: 

𝑛𝑡~Poisson(𝑁𝑡exp[𝑓(𝑡)])   (1) 

where 𝑓(𝑡) allows the number of specimens of the focal species in a particular year to change 

over time. If 𝑓(𝑡) is a linear function of time, then this would be a generalized linear model 

with a log-link function, and with log (𝑁𝑡) as an offset term (Dobson 2008, p.152). It would 

be a simple matter to allow over-dispersion in this model in the usual way if required.  A lag-

phase exists if 𝑓(𝑡) is constant until some year 𝜏, and then takes some other higher values 

thereafter (Aikio et al. 2010). Therefore, we fit 𝑓(𝑡) using piecewise linear splines where the 

first segment is constant (up to year 𝜏). The value of 𝜏, and the number and position of knots 

after year 𝜏, are selected by minimizing the AIC corrected for small samples. We also fit the 

model where 𝑓(𝑡) is constant for all 𝑡, in order to test whether a lag phase is justified. We  

classify a species as having a lag phase if the model chosen has at least one knot, and if the 

slope of 𝑓(𝑡) is positive after the first knot . Our model may be considered a special case of a 

generalized additive model (Wood 2006) using piecewise linear splines, a log-link function, 

and an offset log (𝑁𝑡).  R code for our analysis can be found at 

www.robjhyndman.com/lagphase . Aikio et al. (2010) adjusted the number of specimens 

recorded in a given year by using the quotient nt/Nt prior to cumulation. This is analogous to 

what we have done, except that we have allowed for the count distribution and the changing 

variance, and we have estimated the lag phase without making clearly inappropriate 

assumptions about the data.  

http://www.robjhyndman.com/lagphase
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Without knowing the detailed habits of all collectors in each year, it is impossible to know 

whether to treat all zeroes as valid estimates, all as missing values, or as some intermediate 

combination.  We treated all zeroes of the focal species in a year as valid observations.  We 

compared these results with models in which all zeroes were considered as missing values. 

Results 

Case studies: Cakile maritima.  We estimated a significant lag phase ending in 1949, 52 

years after the first record (Fig. 3). During this estimated lag phase, however, specimens were 

being collected from Western Australia, South Australia and Victoria, suggesting that its 

geographic extent was already increasing rapidly along the south coast, even though the 

collection frequency remained very low.  Treating all zeroes as missing values had little 

effect on the estimate of the end of the lag phase; in this case the estimate was 51 years after 

the first collection. 

Case studies: Holcus lanatus.  Aikio et al. (2010) estimated a lag of 91 years after the first 

record for this species on the South Island. We found a similar estimate of 92 years (Fig. 4).  

However, if all years with zero collections were treated as missing observations, then we 

found no significant lag phase. In this case, there is insufficient data to accurately determine 

whether a lag phase exists and how long it is.  A period of over six decades with no 

collections meant that there was no information on species abundance during the possible lag 

period.  

Reanalysis of all species in the New Zealand data set.  We found that the inclusion of a lag 

phase into our analysis was justified statistically in only 53 of 191 (28%) of cases (Fig. 5a).  

The mean lag time for these significant cases was 25 years (SE 2.3; range 3 to 92 years), with 

the mode of the distribution in the 0-20 year histogram bin.  Taking only those species with 

significant lags, there was a significant, negative correlation between the year in which the 

first record occurred and the length of the lag phase (r = -0.62, p<0.000001).  We note that all 

of the instances of very long lag phases reported by Aikio et al. (2010), and which were not 

significant in our analysis, had a single collection followed by several decades of no records 

at all.  Considering all zero values as missing observations reduced (to 12%) the number of 

cases with significant lags, but with an increased mean of 39 years (SE 2.9 range 13-57). 

Reanalysis of Midwest US data.  A lag phase was only justified in 102 (40%) of 257 of the 

time series.  The mean for these was 33 years (SE 2.2; range <2 to 86) after the first 
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collection (Fig. 5b), again with a mode less than 20 years. For these 102 cases there was a 

strong negative correlation (r= -0.70; p<0.001) between the year of the first record and the 

length of the lag phase. Treating all zeros as missing values, the lag was significant in just 63 

(25%) cases with a mean for those cases of 37 years (SE 3.2; range <1 to97).  

Discussion 

Using a more statistically appropriate approach, we found far fewer significant lag phases 

than in previous analyses of the same data: 72% of the New Zealand species x island time 

series did not have a significant lag phase, compared with only 5% in Aikio et al.’s original 

analysis.  Similarly, for the US data we concluded no significant lags in 60% of regions x 

species compared with Larkin’s 23%. The percentages with significant lag phases were even 

lower if all zeros were treated as missing values.  Of course, it cannot be inferred that the lags 

in all these non-significant cases were equal to zero, since Type II statistical errors could be 

high in small data sets and estimates can only be positive in value.  The data sets that we re-

analysed are often small, with long gaps, and thus the tests have low statistical power: any 

short (real) lags would be unlikely to be detected.  This is not a fault with our method, but a 

statistical fact of life affecting any analysis.  However, a statistically significant lag can be 

biologically meaningless if based on a significant difference from zero or an AIC value 

justifying a more parsimonious model. For the US data, for example, we observed three cases 

that exhibited statistically significant lags but whose length was estimated at very much less 

than one year.  

We must, however, conclude from our analyses that there is little evidence in these data to 

support an interpretation that lag phases are the norm in invasive species.  The high frequency 

of significant lags recorded by Aikio et al. (2010) and Larkin (2012) could have been because 

of invalid statistical assumptions, with cumulative data tending to give unrealistically low 

estimates of standard errors (Mesgaran et al. 2013); it could also be because the parametric 

models that they used were inappropriate, even though they fitted the cumulative data quite 

well.  For example, the von Bertalanffy model that fitted best in about 70% of Aikio et al.’s 

analyses and in 17% of Larkin’s analyses is difficult to justify on logical grounds, as is their 

second choice model, the logistic (Fig. 2).   

While it is intuitively appealing to deal with cumulative data – and straightforward to find 

empirical models that appear to fit well – there are real dangers.  We note that it has become 

common in invasion ecology to analyse cumulative data (e.g. Mikhulka and Pyšek 2001, 
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Delisle et al. 2003, Fuentes et al. 2008).  The error structures of such data must be recognised 

and appropriate actions taken for any statistical analysis to be valid.  More generally, extreme 

caution must be used in the analysis of herbarium data.  Even though we can allow 

mathematically for changes in general botanical collection rate over time (in our case using 

this as an offset), this is only approximate and may even exacerbate errors in very old 

invasions – for example where the only data come from rare, intensive collecting by the few 

notable botanists of the time.  It also does not account for changes in search effort for the 

focal species in response to awareness of its spread.  Increased search effort will inevitably 

result in a greater collection rate for that species, perhaps considerably (Cousens and 

Mortimer 1995), even if total rate of collection of species as a whole barely alters.  

Herbarium collections are irregular in both time and space and are only a very crude indicator 

of abundance or area invaded.  To treat them as if they were equivalent to a formal survey 

could easily lead to erroneous inferences.  We should therefore not expect too much from any 

calculations made from the increasingly available herbarium databases: they, too, will be 

crude.   

Even using a statistically appropriate method, we will still obtain biased (underestimated) lag 

phases because the date of first arrival may be many years (or decades) earlier than the first 

sample is collected; this error is again likely to be more pronounced in early years when there 

were few collectors to cover very large areas.  For example, on the first Australian specimen 

of Cakile edentula it is stated that the species has been “known there wild since 20 years”.  In 

South Africa, the first herbarium specimen of Nassella trichotoma was from 1952, yet 

farmers had known about it prior to 1930 (Wells 1974).  Thus an estimate of a 20 year lag 

phase determined from herbarium samples could easily be only half the true value. How 

useful, then, is such an estimate? 

The significant negative correlation of lag length with the first year of collection in both data 

sets is almost certainly also an artefact. As concluded by Larkin, there is insufficient time for 

long lag phases to have ended within recent, shorter runs of data. There is also insufficient 

time to have detected the end of long lag phases, unless they concluded some years ago. 

Consequently, the longest lag phases must be associated with early years of collecting. 

Further, poor sampling frequency in the earliest years of botanical collecting means there are 

large gaps in the data, which may result in the best model having a lag phase simply because 

there are no intermediate data to demonstrate systematic lack of fit.  The longest lag estimates 

for the New Zealand data obtained by the original authors were all first recorded in the 19th 
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century: the early decades after first discovery in these particular time series were 

characterised by long periods without any collection of a given species.  While long periods 

with no collection are to be expected for very restricted species in a long lag phase, the 

outcome is that we have no data to test for systematic departure from a constant collection 

rate during that period.  It is also possible that the first occurrence may have died out or been 

removed and the next occurrence was a new invasion. 

While we have argued that our statistical approach is less problematic than the approach 

adopted by Aikio et al (2010) and Larkin (2012), we do not consider it a panacea for 

modelling herbarium data. No statistical method can deal with the fundamental underlying 

problem that herbarium data are subject to the changing policies, choices and values of 

collectors over the years, and do not constitute a structured survey of species abundance. Like 

all previous analyses of these data, we have had to make some assumptions in order to carry 

out our statistical analyses. We believe we have made fewer unreasonable assumptions than 

previous analyses, but we cannot take account of collector behaviour, and so our results may 

also be artefacts of the assumptions made. 
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Legends to Figures 

Fig. 1.  Changes in herbarium sample collection over time, based on the combined collections 

of the major Australian herbaria.  Dotted line shows the number of collectors in each year; 

solid line shows the number of samples that they collected. 

Fig. 2.  Alternative models for sample collection rate as a function of time (after having 

adjusted for temporal changes in collection effort).  a-d are models fitted by Aikio et al. 

(2010).  The centre column shows the basic models that Aikio et al. formulated for collection 

rate as a function of cumulative number of samples; the right hand column shows the 

integrated form of those models, relating cumulative sample number to time, which they then 

fitted to data; the left hand column is the relationship between rate of collection (samples per 

year) and time that emerges from each model.  Red lines show the lag phase; blue lines show 

the post-lag period during which the species is assumed to have expanded its range or 

population size. For the right hand column, the increase phase is (a) the von Bertalanffy 

model, (b) linear model, (c) logistic model, (d) exponential model.  In (a) and (c) K is the 

maximum number of samples that will ever be collected and r is the maximum rate of 

collection (an hypothetical, extrapolated value in the case where a linear lag phase is 

combined with the von Bertalanffy).  (e) shows what would be expected if population size 

increases in a sigmoidal fashion after the end of the lag phase (i.e. the pattern accepted by 

most invasion biologists for non-lag populations, e.g. Hobbs & Humphries, 1994) and 

collection rate is directly proportional to population size: note that there would be no sudden 

jump in collection rate (left column) and a linear rather than asymptotic final trajectory for 

cumulative sample number (right column).  

Fig. 3. Analysis of Australian Cakile maritima samples collected in Australia.  (a) number of 

samples collected per year (open symbols), and the fitted model (line, equation 1); (b) 

Frequency of collections adjusted by collection rate of all invasive species, showing 

estimated knots (the first being the statistically significant lag phase ending in 1908), 

confidence intervals (grey shading) and years in which collections were >0 (dashes on x-

axis); (c) cumulative number of records, shown only in years when there were new 

collections. 

Fig. 4.  Analysis of Holcus lanatus data from the South Island of New Zealand (from the 

Allan Herbarium, CHR).  Graphs are equivalent to Fig. 3, with the lag phase ending in 1964. 
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Fig. 5.  Frequency distributions of the lengths of significant lags in (a) New Zealand and (b) 

mid-west USA data. 
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Fig 3. 
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Fig 4. 
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