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Forecast reconciliation: A review

Abstract

Collections of time series that are formed via aggregation are prevalent in many fields. These

are commonly referred to as hierarchical time series and may be constructed cross-sectionally

across different variables, temporally by aggregating a single series at different frequencies,

or may even be generalised beyond aggregation as time series that respect linear constraints.

When forecasting such time series, a desirable condition is for forecasts to be coherent, that

is to respect the constraints. The past decades have seen substantial growth in this field with

the development of reconciliation methods that not only ensure coherent forecasts but can

also improve forecast accuracy. This paper serves as both an encyclopaedic review of forecast

reconciliation and an entry point for researchers and practitioners dealing with hierarchical time

series. The scope of the article includes perspectives on forecast reconciliation from machine

learning, Bayesian statistics and probabilistic forecasting as well as applications in economics,

energy, tourism, retail demand and demography.

Keywords: Aggregation, Coherence, Cross-temporal, Hierarchical time series, Grouped time

series, Temporal aggregation

1 Introduction

In time series forecasting, aggregation occurs in a variety of settings. For example, regional

level tourism demand aggregates to national tourism demand; total revenue from the sale of

individual stock keeping units aggregates to total revenue from all stock keeping units; the

Gross Domestic Product of an economy is an aggregate of individual components; time series

data measured at a quarterly frequency can be aggregated to data at annual frequency. While

hierarchical time series will be defined more formally in Section 2, the notion of hierarchical

forecasting can be understood via the simple example where there is a time series X, a time

series Y and a time series Z = X + Y, and we are interested in forecasts of X, Y and Z.

In practice, it is important to acknowledge that our variables X, Y and Z may be forecast in

isolation from one another. This may occur when each forecast is obtained using a different time

series model, or when forecasts are produced by separate organisational silos (see Chase 2013).

In such cases, it will typically be the case that adding the forecast of X to the forecast of Y will
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not be equal to the forecast of Z. Indeed, even where forecasts for X, Y and Z are produced

jointly, it is not typically the case that forecasts aggregate in the correct fashion1. This leads to

two fundamental questions facing the forecaster of hierarchical time series:

Question 1: How best to adjust forecasts so that they agree with the known aggregation structure?

and

Question 2: Does adjusting forecasts in this manner lead to improvements in forecast accuracy?

These questions have motivated a growing and fruitful area of research, particularly over the

past decade. The top panel of Figure 1 shows the growth in Google Scholar items by the

search terms “Hierarchical forecasting” and “Forecast Reconciliation” (the latter to be defined in

Section 3). The bottom panel tracks the occurrence of the terms “hierarch*“2 and”reconcil” in

the book of abstracts of the International Symposium of Forecasters, the leading conference on

forecasting. Both measures, while crude, pick up on the growing interest in the topic, especially

in academic circles. Further, the reference list of this paper will attest to the multidisciplinary

nature of the field with breakthroughs in hierarchical forecasting being published in top-tier

journals in statistics, econometrics, operations research and machine learning.

The impact of methods for forecasting hierarchical time series has not been limited to academia,

with industry also showing a strong interest. We are aware of many organizations using modern

hierarchical forecast methods in practice, including Amazon, the International Monetary Fund,

the Bank of New York Mellon, IBM, Huawei, H&M, and Volkswagen. Methods have been imple-

mented in leading analytics software platforms such as SAP, SAS, ForecastPro and Fiddlehead

technologies, not to mention numerous open source packages in R and Python (see Section 7).

Among the broader forecasting community including academics and practitioners, hierarchical

data have featured as part of the M5 competition (Makridakis, Spiliotis & Assimakopoulos 2022;

Seaman & Bowman 2022) and the Global Energy Forecasting competition (Hong, Xie & Black

2019).

The growth and impact of hierarchical forecasting make a review paper timely. Throughout our

focus will be on forecasting, although where there are similarities between hierarchical forecast-

ing methods and other literature, we will discuss seminal papers (for example in Section 3.1).

Methods for dealing with hierarchical time series often involve first generating forecasts of all

series in the hierarchy. Throughout this review we will not focus on the models and methods

1Some rare, and necessarily restrictive exceptions are discussed in Section 3.9.
2We acknowledge that this search term may pick up instances of the word hierarchical related to hierarchical

models rather than hierarchical time series, although the use of hierarchical models in a conference primarily on time
series is rare.
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Figure 1: Search term results in Google Scholar and the book of abstracts for the International Symposium
on Forecasting during ISFs (1990-2022)

used to obtain these original forecasts. Also, while we will focus in Section 6 on some specific

application areas where hierarchical forecasting methods have been used extensively, the meth-

ods have been applied so widely that not every applied paper can lie within the scope of this

review and instead our focus is on papers that make important methodological contributions.

The remainder of the paper is organised as follows. Section 2 provides the basic setting for

hierarchical forecasting introducing notation and terminology and covering important historical

background. Section 3 covers forecast reconciliation which has been the hierarchical forecasting

method to garner by far the most attention over the past decade. Section 4 covers the special

case of temporal aggregation of a single time series, which (despite a separate historical devel-

opment) has since adopted methods from (and now merged with) cross-sectional aggregation.

Section 5 covers approaches to probabilistic forecasting, an area that, while previously ignored,

has in recent years seen some important breakthroughs. Significant applications in tourism,

macroeconomics, energy, demography, retail and healthcare are covered in Section 6. Finally, in

Section 8, we look to the future of the field and point to some open questions in hierarchical

forecasting.

Athanasopoulos, Hyndman, Kourentzes, Panagiotelis: 16 May 2023 4
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Figure 2: Left diagram shows a 2-level hierarchical tree structure while the diagram on the right shows a
2-level grouped structure.

2 The setting

2.1 Hierarchical and grouped time series

We define a hierarchical time series as a multivariate time series, y1, . . . , yT, that adheres to some

known linear constraints. For example, Figure 2 (left) shows a 2-level hierarchical structure.

Let yTot,t be the total (level 0) of all series at time t; and let yi,t be the value of the time series at

node i and time t. Let yt ∈ Rn be a vector comprising observations at time t of all time series in

the hierarchy, and bt ∈ Rnb (nb < n) be a vector comprising the observations at time t of only

the most disaggregated bottom-level series. The remaining na = n − nb aggregated series can be

written as

at = Abt,

for an appropriate na × nb aggregation matrix A, and the full set of time series can be written for

all t as

yt = Sbt,

where yt =

at

bt

 and S =

 A

Inb

 is the n × nb summing or structural matrix.

For example, for the hierarchical structure of Figure 2, n = 10, nb = 6, na = 4, bt =

[yAA,t, yAB,t, yBA,t, yBB,t, yCA,t, yCB,t]
′, a = [yTot,t, yA,t, yB,t, yC,t]

′ and

A =


1 1 1 1 1 1

1 1 0 0 0 0

0 0 1 1 0 0

0 0 0 0 1 1

 .

The aggregation matrix, A, describes how the bottom-level series aggregate to the series above.

Hence, the columns of S span the linear subspace of Rn for which the linear constraints hold.

Athanasopoulos, Hyndman, Kourentzes, Panagiotelis: 16 May 2023 5
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We refer to this as the coherent subspace and denote it by s. We refer to the property that data

adhere to these linear constraints as coherence.

Figure 2 (right) shows a grouped structure in which the bottom-level series are aggregated by

attributes of interest that are crossed, in contrast to the hierarchical (nested) structure shown on the

left. For this grouped example, the bottom-level series bt = (yAX,t, yAY,t, yBX,t, yBY,t, yCX,t, yCY,t)
′,

aggregate into yA,t, yB,t and yC,t, and also into yX,t and yY,t. Hence, in contrast to hierarchical

time series, grouped time series do not naturally aggregate (or disaggregate) in a unique manner.

However, for simplicity, when we refer to hierarchical time series we mean both hierarchical

and grouped structures. We will highlight the difference when it is important to do so.

2.2 Other representations

The structural representation, based on the summing matrix S in the form shown above, is not the

only way to write the constraints for the time series yt.

First, the ordering of the series within yt is arbitrary, and there is no requirement for the bottom-

level series to appear below the aggregated series. An alternative order is sometimes more

convenient, and then the rows of S can be permuted to match the order of yt.

The coherent structure can also be expressed via a constraint matrix such that

Cyt = 0.

If we start with the structural representation shown above, then we can write C = [Ina −A].

It is often more convenient to work with this zero-constrained representation, rather than the

structural representation. In fact, we can simply start with a general constraint matrix C, that

may not be of full rank, without defining an aggregation or summing matrix (Di Fonzo &

Girolimetto 2023a).

There is no requirement for the S, A or C matrices to contain only 0s and 1s. They can include any

real values, specifying linear constraints that apply to the available time series (Athanasopoulos

et al. 2020).

Each of these representations has been used in the forecast reconciliation literature, and we will

return to them in subsequent sections.

2.3 Coherent forecasts

When forecasting hierarchical time series, we require the forecasts to adhere to the same linear

constraints as the data; i.e., to aggregate in the same manner, or to follow the same linear

Athanasopoulos, Hyndman, Kourentzes, Panagiotelis: 16 May 2023 6
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Figure 3: Depiction of a three dimensional hierarchy with yTot = yA + yB. The gray coloured two
dimensional plane depicts the coherent subspace s where s⃗1 = (1, 1, 0)′ and s⃗2 = (1, 0, 1)′ are
basis vectors that span s. The red points in s represent realisations or coherent forecasts.

constraints. We define a set of h-step-ahead point forecasts ỹt+h|t ∈ Rn as coherent if ỹt+h|t ∈ s.

Figure 3 presents an example of the simplest possible hierarchy for which yt ∈ R3, bt ∈ R2

and yTot,t = yA,t + yB,t. The coherent subspace is shown as a grey 2-dimensional plane within

a 3-dimensional space. Note that the columns of S, s⃗1 = (1, 1, 0)′ and s⃗2 = (1, 0, 1)′, span the

coherent subspace; i.e., s = span(S). The red points in s represent realisations or coherent

forecasts.

Pritularga, Svetunkov & Kourentzes (2021) note that this definition of coherence implicitly

assumes that the measurement of the data occurs at a given level, typically the lowest. In

practice, this may not be the case and due to measurement errors, different data collection

methodologies, or otherwise, there may be discrepancies in the coherence. Therefore, they

propose to add to the aggregation a statistical discrepancy term δt:

yt = Sbt + δt.

Equivalently, this can be expressed as a slack term in the coherence constraints. When the

data collection is done perfectly, naturally this term is zero. Athanasopoulos et al. (2020) and

Athanasopoulos, Hyndman, Kourentzes, Panagiotelis: 16 May 2023 7
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Kourentzes et al. (2021) provide examples where a time series is included in the hierarchy to

deal with this discrepancy.

2.4 Single-level approaches

Traditionally, forecasts of hierarchical time series have involved selecting one level of aggre-

gation, generating forecasts for that level, and then linearly combining these to obtain a set of

coherent forecasts for the rest of the structure. These methods are usually classified as bottom-up,

top-down or middle-out. Bottom-up approaches require generating forecasts at the bottom-level

and then aggregating these up. Generating forecasts at the most disaggregate level implies

that no information is lost due to aggregation. On the other hand, bottom-level data can be

very noisy, or even intermittent, and hence more challenging to forecast. Top-down approaches

require forecasts for only one time series at the most aggregate level and then disaggregating

these down. Forecasting at the most aggregate level implies a large loss of information, and

it can also be challenging to disaggregate these forecasts down. The disaggregation becomes

even more challenging when the structure is grouped, as then the disaggregation paths are

not unique. Further, Hyndman et al. (2011) and Panagiotelis et al. (2021) show that top-down

approaches can introduce bias, even if the forecasts for the top level are unbiased. Middle-out

approaches require forecasts at some intermediate-level and then aggregating these up and also

disaggregating them down. In general, single-level approaches are limited to using information

from a single-level and potentially ignoring valuable information from all other levels.

Another consideration comes from the number of forecasting models used in the hierarchy. In

the top-down case, all predictions in the hierarchy are anchored to a single forecasting model

at the top level (although forecasts at other levels may be used to compute the proportions for

disaggregation). Similarly, in bottom-up, all forecasts are anchored to the bottom level. This

introduces modelling and estimation risks, where the few forecasts that are used to populate the

rest of the hierarchy may be of poor quality. For example, Kourentzes, Rostami-Tabar & Barrow

(2017) show that even with full knowledge of the data generating process, estimation errors can

substantially reduce the quality of the resulting forecasts on other levels of the hierarchy.

In this section we concentrate on the implementation of single-level approaches for generating

point forecasts. Related approaches for generating coherent probabilistic forecasts are discussed

in Section 5. Methods in the purely temporal setting are reviewed in Section 4.1.

The vast majority of the literature, prior to the introduction of the concept of forecast reconcil-

iation, almost exclusively focused on comparing bottom-up and top-down methods. Orcutt,

Watts & Edwards (1968) and Edwards & Orcutt (1969) are from the early works arguing that

Athanasopoulos, Hyndman, Kourentzes, Panagiotelis: 16 May 2023 8
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information loss is substantial and therefore it is important to work with the most disaggregate

data available. Kinney Jr. (1971) found that disaggregated earnings’ data by market segments

resulted in more accurate forecasts than when firm-level data were used. Building on this result,

Collins (1976) compared segmented econometric models with aggregate models for a group of

96 firms, and found that the segmented models produced more accurate forecasts for both sales

and profit. Dunn, Williams & Dechaine (1976) show that forecasts aggregated from a lower level

for modeling telephone demand are more accurate than the top-down method, although the

comparison was based on only nine series. Shlifer & Wolff (1979) concluded that the bottom-up

method is preferable under some conditions on the structure of the hierarchy and the forecast

horizon.

Schwarzkopf, Tersine & Morris (1988) looked at the bias and robustness of the two methods and

concluded that the bottom-up method is better except when there are missing or unreliable data

at the lowest levels. Dangerfield & Morris (1992) construct 15,000 artificial 2-level hierarchies

using the M-competition data with two series at the bottom level. They found that bottom-

up forecasts were more accurate, especially when the two bottom-level series were highly

correlated. Zellner & Tobias (2000) used annual GDP growth rates from 18 countries and found

that disaggregation provided better forecasts, results in line with earlier perspectives expressed

by Espasa (1994). Another comparison is that of Wanke & Saliby (2007) who compare the two

approaches for safety inventory levels. Wan, Wang & Woo (2013) analyse aggregate versus

disaggregate forecasts for international arrivals into Hong Kong considering alternative bottom-

up approaches, arguing that these take advantage of the heterogeneity across the disaggregate

series, and show that the traditional bottom-up approach is more accurate compared to directly

forecasting at the aggregate level.

There are fewer studies that find clear evidence and argue for a top-down approach, in contrast to

a bottom-up approach. Grunfeld & Griliches (1960) argue that disaggregated data are error prone

and that top-down forecasts may therefore be more accurate. Strijbosch, Heuts & Moors (2008)

in an estimation setting show superiority of a top-down estimator. Athanasopoulos, Ahmed &

Hyndman (2009) propose two new top-down approaches based on forecast proportions rather

than historical proportions which show promising performance. These approaches can lead to

negative weights, which perhaps stretches the definition of disaggregation. Gross & Sohl (1990)

and Athanasopoulos, Ahmed & Hyndman (2009) provide a summary of top-down approaches.

Fliedner & Mabert (1992) experiment with how different groupings (based on clustering) of

time series, affect the forecast accuracy of traditional approaches. Fliedner (1999) argues that

Athanasopoulos, Hyndman, Kourentzes, Panagiotelis: 16 May 2023 9
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strong positive or negative correlation of sub-aggregate series, enhances forecast accuracy

of the aggregate series whether a bottom-up or a direct approach is used for forecasting the

aggregate and vice versa (low correlation in the bottom-level series diminishes forecast accuracy

of the aggregate series). He further concludes that direct forecasts of an aggregate variable are

more accurate than using a bottom-up approach. Lütkepohl (1984a) and Ilmakunnas (1990)

show that it might be preferable to forecast the aggregate variable directly rather then using

a bottom-up approach. Hubrich (2005) also concludes that using a bottom-up approach to

forecast inflation for the Euro area. He attributes this to shocks affecting components of inflation

in a similar way over the evaluation period and therefore forecast bias is increased when

aggregating subcomponent forecasts. Kremer, Siemsen & Thomas (2016) examine bottom-up

versus direct forecasts for the aggregate through a behavioural lens and argue for advantages

and disadvantages for a bottom-up judgemental approach which depend to a large degree on

the underlying correlation structure at the bottom level.

Zotteri, Kalchschmidt & Caniato (2005) and Zotteri & Kalchschmidt (2007) argue that forecast

accuracy is highly correlated to the choice of aggregation level which depends on the underlying

data generation process. Widiarta, Viswanathan & Piplani (2008) compare top-down to bottom-

up, in a restricted simulation setting, and find that the difference in forecast accuracy between

these is insignificant when the correlation between the sub-aggregate components is small or

moderate. Sbrana & Silvestrini (2013) extend these results and conclude that neither top-down

nor the bottom-up approach should be preferred a priori in any empirical analysis. Williams

& Waller (2011) compare top-down to bottom-up demand forecasts. They conclude that the

superiority of the methods depends on whether shared weekly point-of-sale data are used.

Fliedner (2001) also reviewed these approaches, and discuss their advantages and disadvantages.

He notes that different forecasting methods may be better suited to different aggregation levels,

and this may affect the choice of which level to use for forecasting.

Kahn (1998) highlighted the need for a method that would enjoy and combine the good features

of single-level approaches. This call was taken up by Hyndman et al. (2011) and Athanasopoulos,

Ahmed & Hyndman (2009), who introduced the concept of forecast reconciliation.

Athanasopoulos, Hyndman, Kourentzes, Panagiotelis: 16 May 2023 10
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3 Forecast reconciliation

3.1 Least squares reconciliation outside of forecasting

The concept of least squares reconciliation has appeared in several contexts outside of the

forecasting domain. As far back as the 1940s, reconciliation procedures were being used for

national economic accounts. The national economic account is disaggregated into production,

income and outlay, and capital transactions, which are further disaggregated by various factors.

The aim is to coherently estimate the national account for all disaggregated and aggregated

levels. Stone, Champernowne & Meade (1942) formulated the problem using simultaneous

linear equations (similar to the zero-constrained form). Stone (1961) proposed a constrained

estimation approach to balancing national accounts, where the constrained estimates are a

weighted linear combination of initial estimates. This underpinned the work for which Richard

Stone later won the 1984 Nobel Prize in Economics. Byron (1978) formalized and extended

Stone’s work using more computationally efficient procedures. Suppose the national accounts

are expressed as a vector y which need to satisfy the constraint Cy = 0, and let the original

(incoherent) account estimates be denoted by ŷ. Then the reconciled estimates ỹ are found by

solving the constrained generalized least squares (GLS) problem

ỹ = arg miny(y − ŷ)′W−1(y − ŷ), s.t. Cy = 0.

Assuming C is full rank, Byron (1978) and Byron (1979) provide the solution ỹ = Mŷ, where

M = I − WC′(CWC′)−1C

is a projection matrix, and W is a positive definite matrix. See also Bikker, Daalmans & Mushku-

diani (2013) for a more modern treatment of this approach.

Later, the same idea was applied to reconciling other time series produced by national statistics

offices. A review of some of this work is provided by Dagum & Cholette (2006, chapter 11). To

take just one example, seasonally adjusted time series require reconciliation. While the original

time series data are coherent (e.g., national and state employment numbers), after each series is

seasonally adjusted, they become incoherent. The same least squares solution is used for this

problem (Di Fonzo & Marini 2011; Corona, Guerrero & López-Peréz 2021; Quenneville & Fortier

2012).

Temporal reconciliation is also of interest to national statistics offices, ensuring monthly or

quarterly estimates sum to the annual estimates (Chow & Lin 1971). Simultaneous least squares

Athanasopoulos, Hyndman, Kourentzes, Panagiotelis: 16 May 2023 11
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reconciliation of time series estimates in both cross-sectional and temporal dimensions was

introduced by Di Fonzo (1990), building on Rossi (1982).

Least squares reconciliation has also found its way into chemical process measurement. Chemical

process data are inherently noisy, and data reconciliation methods allow adjustment of measured

values to satisfy specific material and energy constraints (Romagnoli & Sanchez 2000).

In the engineering literature, a related problem involves optimal vehicle tracking where roads

provide locally linear constraints on the position of a vehicle (Simon & Chia 2002). This line of

research is summarised in Simon (2006) and Simon (2010).

3.2 First attempts at reconciliation in forecasting

To our knowledge, the earliest published work that applied least squares reconciliation in a

forecasting context was the PhD thesis of Roman Ahmed (2009), working under the supervision

of Rob Hyndman and George Athanasopoulos. The main methodological contributions from

this thesis eventually appeared as Hyndman et al. (2011). First, they showed that all of the

existing bottom-up, middle-out and top-down methods could be expressed as

ỹh = SGhŷh (1)

for a suitably chosen nb × n matrix Gh. (We will drop the subscript h when G does not depend

on the forecast horizon, h.) Here, Gh maps the base forecasts ŷh into the bottom level, and so can

be thought of as a forecast combination that combines all base forecasts to form bottom-level

reconciled forecasts. In the special case of bottom-up forecasting, G = [Onb×na Inb ], while for

top-down forecasts, the first column of G contains the proportions for each of the bottom-level

series, while the remaining columns are all zero.

Hyndman et al. (2011) showed that if the base forecasts ŷh are unbiased with covariance Wh, and

SGhS = S, then the reconciled forecasts ỹh are also unbiased and have covariance SGhWhG′
hS′.

Notably, the condition SGhS = S is generally not satisfied for top-down methods, with the

exception of those discussed in Section 3.6.

To find the optimal matrix Gh, Hyndman et al. (2011) formulated the problem as a regression of

the form

ŷh = Sβh + εh

where εh is the reconciliation error with covariance Vh. This led to the GLS solution

Gh = (S′V−1
h S)−1S′V−1

h . (2)

Athanasopoulos, Hyndman, Kourentzes, Panagiotelis: 16 May 2023 12
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The covariance Vh is unknown (and later shown to be unidentifiable by Wickramasuriya, Athana-

sopoulos & Hyndman 2019), but under some conditions, Hyndman et al. (2011) showed that (2)

collapses to an OLS solution where Vh is replaced by an identity matrix, giving G = (S′S)−1S′.

Another key contribution of Hyndman et al. (2011) was to propose using sparse matrix algebra

to greatly speed up the computations for large systems of time series. Simultaneously and

independently, Di Fonzo & Marini (2011) also proposed sparse matrix algebra for reconciling

historical time series.

The first application of these new ideas was Athanasopoulos, Ahmed & Hyndman (2009), which

appeared two years earlier due to delays in publishing Hyndman et al. (2011). There, the

OLS reconciliation was compared to various top-down and bottom-up methods, using some

quarterly Australian tourism data disaggregated by a geographic hierarchy and purpose of travel.

Variations of these Australian tourism data have since become ubiquitous for benchmarking

forecast reconciliation methods.

The hts R package (Hyndman, Ahmed & Shang 2010) implementing the OLS reconciliation

method appeared on CRAN in 2010, and led to the method quickly becoming popular in

business and industry, long before the methodological paper actually appeared.

An early explanation of the method intended for practitioners appeared as Hyndman & Athana-

sopoulos (2014), while the ideas made their way into an undergraduate textbook in Hyndman &

Athanasopoulos (2018) and Hyndman & Athanasopoulos (2021).

3.3 Scaled reconcilation methods

One obvious drawback of the OLS approach is that it weights all series equally, whether they

are aggregates or disaggregates, and whether their base forecasts are good or bad. An early

recognition of this issue is in Kourentzes, Petropoulos & Trapero (2014) who treat the aggregate

time series to bring all series on the same scale. The same issue prompted Hyndman, Lee &

Wang (2016) to propose a weighted least squares (WLS) solution, where the series are weighted

by the inverse variances of the base forecasts, later referred to as “variance scaling”. If Wh is

the covariance matrix Var(yT+h|h − ŷh), then the WLS solution is Gh = (S′Λ−1
h S)−1S′Λ−1

h and

Λ = diag(Wh). Hyndman, Lee & Wang (2016) was also the first forecasting paper to note that

the methods applied to grouped time series as well as to strictly hierarchical structures.

3.4 Minimum trace reconciliation

Wickramasuriya, Athanasopoulos & Hyndman (2019) provided theoretical insights into the

problem by taking an optimization approach rather than a regression approach. They formulated

Athanasopoulos, Hyndman, Kourentzes, Panagiotelis: 16 May 2023 13
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the problem as minimizing the trace (MinT) of the covariance matrix Var(yT+h|h − ỹh), equal to

the sum of the variances of all the reconciled forecasts, and showed that the solution is given by

Gh = (S′W−1
h S)−1S′W−1

h ,

where Wh is the covariance matrix Var(yT+h|h − ŷh). Equivalently, ỹh = Mhŷh, where

Mh = S(S′W−1
h S)−1S′W−1

h .

This MinT solution is equivalent to GLS, and has the WLS and OLS solutions as special cases.

Wickramasuriya, Athanasopoulos & Hyndman (2019) also showed that there is an equivalent

and more computationally efficient solution given by

Mh = In − WhC′(CWhC′)−1C

where C = [Ina − A], which matches the earlier work of Byron (1978) for reconciling national

accounts (although derived from a different perspective).

A difficulty with the MinT solution is in estimating the covariance matrix, Wh, especially for

h > 1. The sample covariance matrix of the base models’ residuals provides an estimate of W1,

but it is often a very poor estimate, and may be singular, especially when n > T (which is true

for many real hierarchical time series). Wickramasuriya, Athanasopoulos & Hyndman (2019)

proposed a shrinkage estimator of W1, where the off-diagonal elements are shrunk towards zero,

and suggested approximating Wh as a scalar multiple of W1. The scalar multiple cancels when

computing Gh, and so it does not need to be estimated when computing point forecasts.

Wickramasuriya, Athanasopoulos & Hyndman (2019) also discuss a simple alternative approach

to finding Wh, first proposed by Athanasopoulos et al. (2017), based only on the structure

of the hierarchy, and not on a statistical estimate. In this “structural scaling” approximation,

Wh = Λ ∝ diag(S1nb), where 1nb is an nb-vector of 1s. That is, Wh is a diagonal matrix with

entries proportional to the row sums of S. This is the covariance matrix that would arise if all

the most disaggregated series were uncorrelated with each other and they had the same forecast

variance.

Observe that (1) implies a combination of forecasts in Ghŷh. Motivated by this, Pritularga,

Svetunkov & Kourentzes (2021) investigated the implications of estimation uncertainty in

forecast reconciliation. They showed that uncertainties in both the forecasting models generating

ŷh and in Gh will influence the quality of the reconciled forecasts. As S is fixed, the approximation
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of Wh carries the reconciliation uncertainty in Gh, where each element that needs to be estimated

can potentially increase the forecast error of the reconciled forecasts. This can help explain the

surprising performance of “structural scaling” (Athanasopoulos et al. 2017), where all elements

of G are fixed, and the volatile performance of MinT, especially for short time series, where

estimation errors in W1 can dominate. By introducing various approximations of increasing

complexity of W1, Pritularga, Svetunkov & Kourentzes (2021) demonstrate that this choice can

have significant effect on the quality of the reconciled forecasts, especially when it comes to

having consistent performance over different forecast origins, a key element of trustworthiness

in forecasting (Spavound & Kourentzes 2022). From the investigated approximations, retaining

only the block-diagonal structure of the shrinkage estimator of W1 was found to perform well in

a variety of situations.

3.5 Other optimization approaches

van Erven & Cugliari (2015) took a game-theoretic approach to forecast reconciliation, and chose

to find the solution to the minimax problem

V = min
ỹ∈s

max
y∈s

{ℓ(y, ỹ)− ℓ(y, ŷ)} ,

where ℓ is a loss function, and s is the coherent subspace. They demonstrate that V ≤ 0, so that

the reconciled forecasts are guaranteed to have smaller loss than the base forecasts. They further

show that, when ℓ is L2 loss, the minimax solution is equivalent to solving the constrained least

squares problem, where the reconciled and base forecasts are as close as possible subject to the

reconciled forecasts being coherent, leading to the closed form solution of (2) for Gh .

Panagiotelis et al. (2021) unify, and in certain cases generalise, the results of van Erven &

Cugliari (2015) and Wickramasuriya, Athanasopoulos & Hyndman (2019), providing a geometric

intuition. In particular, they consider a loss function of the form (y − ỹ)′Ψ(y − ỹ), where Ψ can

be any symmetric positive definite matrix, and derive two main results. The first is that the

reconciled forecast ỹ = S(S′ΨS)−1S′Ψŷ will always improve upon the base forecast (generalising

the result of van Erven & Cugliari 2015, to non-diagonal Ψ). The second is that the MinT solution

ỹ = S(S′W−1
h S)−1S′W−1

h ŷ will optimise loss in expectation for any choice of Ψ (generalising the

result of Wickramasuriya, Athanasopoulos & Hyndman 2019). Note that the second result does

not consider the estimation uncertainty in Gh (Pritularga, Svetunkov & Kourentzes 2021), which

can be especially prominent for short time series, explaining cases in the literature where this

result seems to be violated.
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If we are willing to drop the unbiased condition, and allow both base and reconciled forecasts

to be biased, a different least squares solution emerges, as shown by Ben Taieb & Koo (2019).

They use an expanding window approach, applying the base forecasting method iteratively

to the training data, computing ŷt+h|t, the h-step-ahead base forecast of yt+h based on training

data y1, . . . , yt, for t = T1, . . . , T − h. They consider the regularized empirical risk minimization

problem

min
G

LT(G),

where

LT(G) =
1

Nn
∥Y − ŶG′S′∥F + λ∥vecG∥1,

N = T − T1 − h+ 1, ∥ · ∥F is the Frobenius norm, Y = [yT1+h, . . . , yT]
′, Ŷ = [ŷT1+h|T1

, . . . , ŷT|T−h]
′,

and λ is a regularization parameter. The first term contains the errors of the reconciled forecasts,

while the second shrinks the elements of G to zero, providing some regularization of the amount

of reconciliation involved. When λ = 0, they show that its solution is

Ĝ = B′Ŷ(Ŷ ′Ŷ)−1.

where B = [bT1+h, . . . , bT]
′. When Ŷ ′Ŷ is non-invertible, the solution is not unique, and a

generalized inverse can be used.

Inspired by this development, Wickramasuriya (2021b) proposed minimizing the trace of the

forecast error covariance matrix without an unbiased constraint, to create an unconstrained

version of MinT which she called “MinT-U”. She also derived an estimate of the resulting G

matrix in the case where the series are jointly weakly stationary, dubbing the resulting method

“EMinT-U” (empirical MinT unconstrained).

3.6 Adding optimization constraints

Any approach to reconciliation based on optimisation uses a form of constrained optimisation

since reconciled forecasts must lie on the coherent subspace. However, at times additional

constraints may be implemented. The first is the case where reconciled forecasts must be

non-negative. In general, even if base forecasts are constrained to be positive (which can be

achieved by modelling on the log scale and back-transforming), there is no guarantee that the

usual reconciliation approaches such as OLS and MinT will maintain the non-negativity of

forecasts. To address this issue, the usual optimisation problem can be augmented with non-

negativity constraints on the reconciled forecasts. Such optimisation problems can be solved

using quadratic programming, with Wickramasuriya, Turlach & Hyndman (2020) providing
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an early example for forecast reconciliation, and Di Fonzo & Girolimetto (2023b) a more recent

example.

Kourentzes & Athanasopoulos (2021) also consider the case of non-negative reconciled forecasts.

However, instead of using a constrained optimisation approach, they propose a heuristic to

iteratively adjust the reconciled predictions to be non-negative. Although this does not guar-

antee optimal solutions, their proposed algorithm has the interesting feature that it distributes

adjustments of forecasts across the hierarchy, which can be useful in a variety of situations, such

as the application of judgemental adjustments on specific nodes of the hierarchy.

Di Fonzo & Girolimetto (2023b) also discuss an effective nonnegative heuristic called “set-

negative-to-zero”, whereby the negative reconciled forecasts at the bottom level are set to zero,

and the remaining forecasts computed via aggregation.

Another constraint of interest is where some particular base forecasts remain unchanged. For

instance, Hollyman, Petropoulos & Tipping (2021) consider the case of reconciliation where the

top-level base forecast is retained. This differs from truly top-down approaches in that it can

be done while also preserving the unbiasedness of base forecasts. To briefly illustrate the main

idea, for a three variable hierarchy where yTot,t = yA,t + yB,t, either setting


ỹTot,t

ỹA,t

ỹB,t

 =


ŷTot,t

ŷA,t

ŷTot,t − ŷA,t

 or


ỹTot,t

ỹA,t

ỹB,t

 =


ŷTot,t

ŷTot,t − ŷB,t

ŷB,t


will lead to coherent forecasts that preserve unbiasedness. Any average between these two

solutions will have the same properties. Hollyman, Petropoulos & Tipping (2021) generalise this

idea to more complex hierarchies, and the properties of their methods are investigated by Di

Fonzo & Girolimetto (2022b). Zhang et al. (2022) further generalise this idea to a setting where

reconciliation can be carried out while keeping a subset of base forecasts unchanged and not

just the top level. Conditions on how a set of such “immutable” series can be selected are also

provided by Zhang et al. (2022).

3.7 Machine learning and regularization

Machine Learning (ML), including Artificial Intelligence (AI), methods have been used to

provide various modifications of the optimal combination approach of Hyndman et al. (2011).

Most of the contributions, attempt to replace the linear regression formulation with a less

restrictive method to obtain combinations of forecasts from the various hierarchical levels.

Coherence is achieved via a bottom-up approach, or by embedding coherence in the ML training.
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A minority of contributions focus on other aspects of hierarchical forecasting, such as selecting

the best reconciliation method.

Qiao & Huang (2018) focus on earnings forecasting, and rely on the problem structure of hier-

archical forecasting to address this, recognising the forecast combination at its core. However,

instead of combining forecasts across hierarchical levels, they combine forecasts across alterna-

tive hierarchical mappings, and then proceed to achieve coherence using a bottom-up approach.

The different mappings are the product of the different ways one can do the accounting of the

different components that contribute to the net earnings. This raises the question of which

hierarchy is best to use, but also how to efficiently search across the different hierarchies. They

resolve the construction of the hierarchy using a genetic algorithm, to avoid the computationally

infeasible greedy search across mappings of the hierarchy. Although they do not discuss this

in their work, this approach could be used to relax the conventionally rigid hierarchies, and

identifying re-mappings that can potentially improve the final result. Forecasts are generated by

LSTM networks, for each time series and each different mappings of the hierarchy. The forecasts

are then combined across these mappings to give final prediction, with encompassed forecasts

being rejected from the combination.

Spiliotis et al. (2021) rely on random forests and gradient boosting machines, specifically XG-

Boost, to facilitate the combination of forecasts implied by hierarchical forecasting. They show

superior performance to the linear approach, however it is unclear whether the gains are due to

the nonlinear capabilities of the ML methods, or due to the differential combination over various

forecasts horizons that are considered and are typically omitted by the linear counterparts.

Furthermore, it should be noted that the objective of the training of the ML methods is obtaining

the minimum forecast combination errors, rather than minimum reconciliation errors. Coherent

forecasts across the complete hierarchy are obtained via bottom-up aggregation. Burba & Chen

(2021) propose an alternative use of ML to achieve coherent forecasts. They recast the recon-

ciliation step as an encoder-decoder setup, where base forecasts are processed by a trainable

encoder to produce the reconciled bottom-level forecasts. These are then decoded using the

summing matrix, as with a standard bottom-up setup. The encoder is implemented using a

shallow feed-forward neural network. They find that this approach demonstrates increasing

gains for deeper hierarchies.

Gleason (2020) attempts to overcome the lack of focus on coherence by adjusting the objective

function. Using neural network forecasts, he includes a regularisation term that penalises

incoherences in the generated forecasts. This follows from Mishchenko, Montgomery & Vaggi
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(2019) who proposed a similar regularisation term to obtain reconciled forecasts directly from

the base forecasts. The disadvantage of these regularisation approaches is that they result in

soft constrains that do not guarantee coherence. Gleason (2020) provides two alternatives for

the regularisation term and shows that the resulting forecasts can outperform standard MinT

reconciliation. However, when the regulisation is used in conjunction with MinT this results in

both coherent and the most accurate forecasts. Han, Dasgupta & Ghosh (2021) propose a similar

approach, where a regularisation term is added in the loss function, again based on coherence

constraints. They also consider a regularised loss for producing coherent quantile forecasts. The

authors demonstrate the use of the proposed regularised loss on a variety of linear and ML

models, and also empirically show the negative effect of regularisation on coherence.

Shiratori, Kobayashi & Takano (2020) introduces a regularisation term, based on the coherence

constraints, in the objective function to push bottom-level forecasts to fit both on their target

series and their aggregate counterparts. They forecast the bottom-level series but as the regu-

larisation cannot ensure coherence, these are used in a bottom-up setting to produce coherent

forecasts for the rest of the hierarchy. The authors demonstrate the efficacy of this in the context

of neural networks. They find that these outperform conventionally trained networks whose

forecasts are then reconciled, either with bottom-up or MinT.

Paria et al. (2021) propose a regularised neural network with sequence-to-sequence architecture.

Focusing on the hierarchical part of the contribution, a regularisation term is added to incorpo-

rate the coherence constraints. As with the previous work, this does not guarantee coherence,

yet forces the final forecasts to be approximately coherent. The regularisation is embedded in

the loss function of the network, achieving an integrated approach. In contrast to the previous

work, the network outputs forecasts for all the levels.

The contribution by Anderer & Li (2022) can be seen to belong loosely in the regularisation

approaches. Focusing on the M5 competition dataset, the authors produce separate forecasts

for the top- and the bottom-levels of the hierarchy, using different methods (NBEATS and

LightGBM respectively). To achieve coherent forecasts they modify the loss function of the

bottom-level method, where positive errors can are multiplied by a factor. This factor is identified

by minimising the incoherence error between the summed bottom-level forecasts and the top-

level forecast. Note that this factor is calibrated by keeping the top-level forecasts fixed, and

therefore any coherence is obtained by modifying the bottom-level forecasts.

Rangapuram et al. (2021) propose another way to achieve an integrated forecast-reconciliation

mechanism. First, a global neural network is used to forecast the time series in the hierarchy,
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which with the assumption of a forecast distribution can produce sample forecasts. The sample

forecasts are subsequently reconciled, obtaining distributions of coherent probabilistic forecasts.

The calculation of the loss for the training of the model makes use of the reconciled forecasts,

allowing an end-to-end approach that parametrises the model to achieve both accurate and

coherent forecasts. Note that the methodology allows for various assumptions on the forecast

distribution, and the relaxing of these. The resulting forecasts guarantee coherence, in contrast

to the previous integrated approaches. The substantive difference with conventional hierarchical

approaches, that post-processes base forecasts, is that the global network can model richer

interconnections between the time series in the hierarchy for the generation of the forecasts.

Furthermore, the authors compare the results of the proposed hierarchical model against a global

learner without coherent forecasts and demonstrate on average better performance, suggesting

that the integrated methodology offers gains beyond any achieved by the global learning.

Wang et al. (2022) contribute with a similar formulation. The important differences are in that

they use an autoregressive transformer to produce the base forecasts and that their approach

does not require assuming particular predictive distributions. Instead, they rely on empirical

estimation (conditional normalising flow) for the distributions. Furthermore, their approach

focuses on obtaining bottom-level forecasts which are internally aggregated in a bottom-up

fashion to the complete hierarchy. Similar to the Rangapuram et al. (2021), the errors of the final

forecasts are used during training, realising an end-to-end hierarchical forecasting method. The

authors demonstrate gains in performance over a non-hierarchical version of the their method,

as well as over various benchmarks.

Focusing on temporal hierarchies, Theodosiou & Kourentzes (2021) provide an end-to-end

neural network based method. Similarly to Burba & Chen (2021) they explore a series of encoder-

decoders to achieve reconciliation, considering fixed and trained decoder weights, using the

complete or only the bottom-level of the hierarchy. These can be used instead of conventional

hierarchical methods, demonstrating good performance in a global learning setting. To achieve

an end-to-end integration, they pass the temporal hierarchy data through a convolutional layer

and subsequently to an LSTM. The convolutional layer compresses the abstracts the hierarchical

time series, and the LSTM models the dynamics over time. By appending an encoder-decoder

to the outputs of the LSTM an end-to-end methodology is obtained. The authors demonstrate

the gains due to the various components, but also investigate the amount of time series that are

needed to achieve good performance in a global training setting. By modifying the training loss

function, Theodosiou & Kourentzes (2020) extend the method to provide quantile forecasts.
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Abolghasemi, Tarr & Bergmeir (2022) use ML to address the challenge of selecting the best

method to perform the hierarchical reconciliation. To achieve this they rely on a meta-learning

classifier, which is trained to identify given the time series features of a dataset what is the

best reconciliation method to employ. The approach is quite flexible in terms of features and

classifiers, as well as the forecasting models and reconciliation methods.

Abolghasemi et al. (2019) use ML to improve the performance of non-combination hierarchical

approaches. They consider various ML methods to obtain better prorations to decompose

upper-level forecasts to lower-levels. Feng & Zhang (2020) provide a standard implementation

of hierarchical methods using base forecasts from ML models, and find the hierarchically

reconciled forecasts to be the most accurate. Punia, Singh & Madaan (2020) leverage on LSTM

networks to produce forecasts for the cross-temporal case. Forecasts are generated for the

various temporal aggregation levels, which are reconciled first by using temporal hierarchies

and then cross-sectional. Sprangers, Schelter & Rijke (2021) propose a method for probabilistic

gradient boosting machines, and benchmark its performance on the hierarchical M5 dataset,

demonstrating good performance against other non-hierarchical ML methods. Although the

proposed method can provide probabilistic predictions for all time series of the hierarchy,

coherence is not established. Mancuso, Piccialli & Sudoso (2021) use a deep neural network to

directly produce reconciled forecasts. The neural network captures the structure of the hierarchy,

as well links the relationship between time series features extracted at any level of the hierarchy

and explanatory variables into an end-to-end neural network.

3.8 Bayesian versions

Papers tackling hierarchical forecasting from a Bayesian angle focus on different aspects of the

problem, but have much in common due to certain advantages of Bayesian inference. These are:

the suitability of Bayesian inference for models with latent states such as state space models; the

natural way uncertainty is propagated via Bayes’ rule leading to probabilistic forecasts; and the

use of priors to incorporate judgement into forecasts.

Park & Nassar (2014) propose a top-down approach, similar to Athanasopoulos, Ahmed &

Hyndman (2009), that forecasts the bottom-level series as proportions of the top-level forecast,

rather than forecasting them directly. To this end, a state space model is proposed where

latent states are mapped to proportions via the softmax function. A variational approximation

factorised into states and remaining parameters is employed with Evidence Lower Bound

(ELBO) optimised via the EM algorithm. For the data considered, the method improves upon

the top-down method of Athanasopoulos, Ahmed & Hyndman (2009), and gives more accurate
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bottom-level forecasts than bottom-up and OLS. However, as a top-down method, there is

no scope for top-level forecasts to be improved using bottom-level series, and for the data

considered in the paper, both bottom-up and OLS generate more accurate forecasts for the

top-level series.

Roque, Torgo & Soares (2021) also employ Bayesian modelling for forecasting hierarchical data

in a way that differs from the two-step reconciliation approach. In particular, they decompose

time series into a trend, modelled by a piecewise linear component, and a stationary component

modelled as a sum of Gaussian Processes (GPs). Rather than modelling individual GPs for

each series in the hierarchy, these are fit group-wise, with groups determined according to the

hierarchical structure. The method outperforms MinT in an empirical study for the Australian

prison population data, but not for the Australian tourism data.

Another strain of the literature brings a Bayesian approach to the regression model interpretation

of forecast reconciliation. Novak, McGarvie & Garcia (2017) recognise that the posterior of βh

can act as a probabilistic forecast for the bottom-level series. Using Markov chain Monte Carlo

to obtain a sample from this posterior, and then aggregating, gives a probabilistic forecast for

the entire hierarchy. Eckert, Hyndman & Panagiotelis (2021) also obtain a posterior on βh, but

their focus is on augmenting the reconciliation regression equation with a vector of intercepts

that allow for base forecasts to be biased and evolve according to a state space representation.

Both Novak, McGarvie & Garcia (2017) and Eckert, Hyndman & Panagiotelis (2021) suggest

that in a Bayesian setting, judgement can be incorporated via the prior, in the latter case via an

explicit empirical example where prior information about a structural break in data classification

can be exploited. Also, while both papers recognise the potential of Bayesian inference to

obtain probabilistic forecasts, neither paper makes this the focus of empirical evaluation. Novak,

McGarvie & Garcia (2017) minimise loss functions over the posterior sample and then use this

as a point forecast, while Eckert, Hyndman & Panagiotelis (2021) use maximum a posteriori

(MAP) estimates as point forecasts.

Probabilistic forecast reconciliation is the motivation and focus of the Bayesian algorithm

proposed by Corani et al. (2021). In particular, a prior is placed on the bottom-level series

with the mean set to point forecasts obtained in the first step of forecast reconciliation and a

variance given by the variance-covariance matrix of one-step ahead errors. This prior is updated

using the top-level forecasts obtained in the first stage of forecast reconciliation via Bayes’ rule.

The method generalises MinT in the sense that the posterior mean is equivalent to the usual

MinT approach. The necessary updates via Bayes’ rule have parallels with the Kalman filter
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since the reconciliation problem is recast as a linear Gaussian model. The empirical results are

evaluated using scoring rules for probabilistic forecasts including the CRPS and energy score.

This approach has also recently been extending to the challenging case of forecast reconciliation

for discrete data by Corani et al. (2022) and Zambon, Azzimonti & Corani (2022).

Bayesian methods are likely to continue to play an important role in the development of the

forecast reconciliation literature. Some promising avenues will be incorporating information

from the hierarchical structure via the prior and to use Bayesian methods to obtain non-Gaussian

probabilistic forecasts. The challenges are likely to be computational in nature, as scalability of

MCMC methods to large hierarchies may be difficult. The development of fast alternatives such

as variational inference represent a promising way forward.

3.9 In-built coherence

So far, all the approaches discussed have involved two steps — first compute the base forecasts

ŷh, and then reconcile them to produce ỹh. The computationally slow part is producing the

base forecasts, because they usually involve fitting models to each series individually, with the

estimation requiring non-linear optimization. However, as shown by Ashouri, Hyndman &

Shmueli (2022), if the base forecasts ŷ are produced using a linear regression model, the base

forecasts and reconciliation can be combined, giving coherent forecasts directly in a single closed

form equation. Further, the computation is extremely fast provided sparse matrix algebra is

used.

Another approach which aims to produce coherent forecasts directly is due to Pennings & Dalen

(2017), who propose the state space model

yt = Sµt + εt, εt ∼ N(0, Σε), (3)

µt = µt−1 + ηt, ηt ∼ N(0, Ση).

Variations are also considered, including covariates in the measurement equation (3). Coherent

forecasts arise naturally using the Kalman filter, as discussed by Simon (2010). However, the

covariance matrices are difficult to estimate with anything other than small hierarchies.

A related state space approach was proposed by Villegas & Pedregal (2018), who show that their

formulation subsumes bottom-up, top-down, and some forms of forecast reconciliation and

combination forecasting.
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Inbuilt constraints to form coherent forecasts have also been considered in an ARIMA mod-

elling context (Guerrero 1989; De Alba 1993) and for exponential smoothing forecasts (Rosas &

Guerrero 1994).

4 Temporal and cross temporal reconciliation

4.1 Early temporal aggregation papers

Studying the effects of temporal aggregation on forecasts goes back to the seminal works

of Amemiya & Wu (1972), Tiao (1972), and Brewer (1973). Wei (1979), Lütkepohl (1984b),

Lütkepohl (1986), Stram & Wei (1986), Hotta & Cardoso Neto (1993) and Rossana & Seater

(1995) study the effect of temporal aggregation on seasonal and non-seasonal ARIMA processes

respectively, with aligned theoretical results. In general, these show that aggregation to the

annual frequency simplifies dynamics of ARIMA processes generated at monthly or quarterly

frequencies. They state that “quarterly data may be the best compromise among frequency of

observation, measurement error, and temporal aggregation distortion”. Such observations are

not unusual. A similar conclusion is reached by Nijman & Palm (1990). Silvestrini & Veredas

(2008) provide a detailed review of the literature to that point, with a focus on the implications

on the model structure and identifiability for univariate ARIMA and multivariate GARCH

processes.

In parallel to the investigations in the econometric literature up to the early 2000s, temporal

aggregation was becoming popular in high-frequency time series forecasting, albeit implicitly.

The relatively limited computational resources of that period had forced researchers to develop

clever ways to handle the long time series appearing in applications such as daily electricity

load forecasting. The dominant approach had become to split the daily time series into seven

weekly series, each corresponding to a stock measurement at a specific week of the day (Hippert,

Pedreira & Souza 2001).

From an accuracy standpoint, in the last decade there has been a revival of temporal aggregation

in the forecasting literature. Luna & Ballini (2011) study 111 weekly time series related to

cash withdrawals. They examine forecasts generated by two top-down approaches and find

considerable improvements compared to forecasts generated by the daily models directly.

Motivated by intermittent demand forecasting, Nikolopoulos et al. (2011) proposed the ADIDA

method, where a time series is temporally aggregated to a less intermittent level, forecasted, and

subsequently disaggregated. The authors find promising accuracy gains, although there is only

heuristic guidance for the level of temporal aggregation. Spithourakis et al. (2011) demonstrate
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the benefits of using ADIDA in fast moving consumer goods, while Spithourakis et al. (2014)

attempt to develop the theoretical background for the method, investigating the aggregation

and disaggregation mechanism, and trying to identify how to select well-performing temporal

aggregation levels. Rostami-Tabar et al. (2013) and Rostami-Tabar et al. (2014) derive the

optimal temporal aggregation level for AR(1), MA(1), and ARMA(1,1), when simple exponential

smoothing is used to produce the forecasts.

Notably the discussion so far has been on non-overlapping temporal aggregation. This form of

aggregation acts as a moving average filter (Kourentzes, Petropoulos & Trapero 2014), while

substantially reducing the available sample size. Boylan & Babai (2016) investigate the effect of

overlapping temporal aggregation, where a moving window is used to aggregate the time series,

which is moved iteratively over the original series, including and dropping one observation at the

time. They provide the conditions for which overlapping temporal aggregation outperforms its

non-overlapping counterpart for independently and identically distributed demand processes.

Earlier work on overlapping aggregation by Hotta, Morettin & Pereira (1992) explore the

effects on ARIMA, and by Mohammadipour & Boylan (2012) on INARMA models. Similarly,

Petropoulos, Kourentzes & Nikolopoulos (2016) motivated by intermittent demand problems,

investigate empirically the usefulness of aggregating over unequal time periods, finding cases

that can be beneficial. Babai, Boylan & Rostami-Tabar (2022) provide an extensive review of the

aggregation literature.

The use of temporal aggregation in demand forecasting is natural, as we are typically interested

in the demand of the lead time period, which lends itself to temporal aggregation, and remains

an active research area (for example, Rostami-Tabar et al. 2019; Saoud, Kourentzes & Boylan

2022).

4.2 Temporal reconciliation

Motivated by the resurgence in the interest in temporal aggregation, following the work by

Nikolopoulos et al. (2011), Kourentzes, Petropoulos & Trapero (2014) propose the Multiple

Aggregation Prediction Algorithm (MAPA), where a time series is modelled independently at

multiple temporal aggregation levels with a state-space model, such as exponential smoothing,

and then these models are combined by state. Temporal aggregation filters high frequency

components in the time series, making low frequency ones more prominent. MAPA takes

advantage of this to provide forecasts that perform well both in the short- and long-term forecast

horizons. A by-product of the algorithm is that the resulting forecasts are coherent at the various

temporal aggregation levels, which is a benefit the authors stress from a decision-making
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perspective. In follow up work Kourentzes & Petropoulos (2016) investigate the impact of

temporal aggregation on promotional indicator variables. They demonstrate the usefulness

of the method in the presence of promotional information. Similar benefits are seen in the

case of intermittent demand when relying on multiple temporal aggregation levels instead of a

single level (Petropoulos & Kourentzes 2015), as well as in inventory management (Barrow &

Kourentzes 2016; Petropoulos, Wang & Disney 2019), again alluding to the connection between

temporal aggregation and supply chain management. Kourentzes & Petropoulos (2016) compare

directly the use of optimally identified single temporal aggregation levels to using multiple

levels. They find that the latter is preferable, even when the underlying data generating process

is known. Using multiple aggregation levels results in combinations of forecasts, therefore

reducing the modelling risk.

Athanasopoulos et al. (2017) combine the idea of using the multiple temporal aggregation levels

of MAPA with hierarchical reconciliation, introducing the notion of temporal hierarchies. With

temporal hierarchies, multiple levels of temporal aggregation of a time series (typically up to the

annual level) are constructed from the original series and modelled independently. Subsequently,

the forecasts are reconciled using the approaches outlined previously.

Let the original time series yt, with t = 1, . . . , T, be observed at a sampling frequency 1/m (e.g.,

m = 12 for monthly data). The aggregation levels {k1, . . . , kp} are the p factors of m in ascending

order, where k1 = 1 and kp = m. For each factor k of m, the non-overlapping temporally

aggregated time series is constructed as:

x[k]j =
t∗+jk−1

∑
t=t∗+(j−1)k

yt,

where j = 1, . . . , ⌊T/k⌋ and t∗ = T − ⌊T/m⌋m + 1, ensuring that all aggregation levels have

complete aggregation windows. Note that x[1]j = yt. The complete hierarchy progresses at the

observation index of the most aggregate level, which we define as τ (this corresponds to j at

that level). For each aggregation level, we stack the observations in column vectors

x[k]τ =


x[k]mk(τ−1)+1

x[k]mk(τ−1)+2
...

x[k]mkτ

 ,
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where mk = m/k, τ = 1, . . . , N, and N = T/m. Collecting these in one column vector, we obtain

xτ =


x[m]

τ

x[m−1]
τ

...

x[1]τ

 .

The structural representation becomes xτ = Sx[1]τ with S =

A

I

 and

A =


1′m

Im/kp−1 ⊗ 1′kp−1
...

Im/k2 ⊗ 1′k2

 .

We have used xτ in the notation to clearly distinguish a temporal hierarchy from a cross-sectional

one that uses yt. An example for a quarterly time series (m = 4) is provided in Figure 4. If there

are multiple seasonalities that are not integer multiples of each other, the resulting additional

temporal aggregations can simply be stacked in xτ, and A can be extended accordingly.

Annualτ

Semi Annual2(τ−1)+1

Quarter4(τ−1)+1 Quarter4(τ−1)+2

Semi Annual2(τ−1)+2

Quarter4(τ−1)+3 Quarter4(τ−1)+4

Figure 4: A temporal hierarchy for a quarterly time series at year τ, with m = 4.

An important difference between a temporal hierarchy and the data structure in its predecessor

MAPA, is that the use of the p factors of m simplifies the hierarchical structure and allows the

direct implementation of hierarchical reconciliation, with the major advantage being that now

there are no model restrictions, and at each level different forecasting models/methods can

be used. Further, there is added flexibility in the combination of the forecasts between levels,

through G. In contrast to cross-sectional hierarchies, temporal hierarchies can be constructed

for any time series, requiring no additional data. However, this comes at the cost of estimation

inefficiencies. Since there are only N = T/m observations of the complete hierarchy, this

significantly affects any estimation required in the approximation of Wh, which motivated
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Athanasopoulos et al. (2017) to propose the aforementioned structural scaling that requires

no estimation. Nystrup et al. (2020) propose and demonstrate the benefits of more advanced

approximations that take advantage of the autocorrelation in the forecast errors, when there

is sufficient data, and demonstrate their merits in a short-term electricity load forecasting

application. Nystrup et al. (2021) go one step further and propose an estimator based on an

eigendecomposition of the temporal correlation matrix, which is able to perform well even with

relatively limited data compared with the dimension of the temporal hierarchy.

Athanasopoulos et al. (2017) provide simulation and empirical evidence of the accuracy ben-

efits of forecasting with temporal hierarchies. These benefits increase with added modelling

uncertainty and at more temporally aggregate levels, echoing the arguments and evidence in

Kourentzes, Petropoulos & Trapero (2014) and Kourentzes & Petropoulos (2016). The good per-

formance of temporal hierarchies has been evidenced in various follow-up studies (for example,

Yang et al. 2017b; Jeon, Panagiotelis & Petropoulos 2019; Nystrup et al. 2020, 2021; Kourentzes

et al. 2021).

4.3 Cross-temporal reconciliation

Observe that cross-sectional hierarchies are described at time t for time series yt, while temporal

hierarchies at time τ for xτ contain temporally aggregate views of yt. Given that hierarchical

methods are motivated to support forecasting at various levels of a hierarchy, cross-sectional

and temporal hierarchies on their own may have limitations. For example, consider the case

of forecasting for a grocery retailer. Let yt ∈ yt describe the sales of a particular ice cream

product. Cross-sectionally this may be grouped with other similar products, or with product

sales within a geographic demarcation, and so on. The further we aggregate, the less relevant

a forecast becomes for the specific period t and at the granularity of yt. Although we may be

interested in the daily sales of a specific ice cream product, it is unlikely that we are interested in

the daily sales at the top-level of the hierarchy describing the total company sales. Similarly,

from the temporal point of view, it is unlikely that we are interested in the sales of yt in time

increments τ, for example the sales of a particular ice cream product in several years. A more

aggregate view across products and time units is typically more relevant for decision makers,

with many nodes in a hierarchy having the role of statistical devices that improve the quality of

the overall coherent forecast, rather than being directly connected with some supported decision

(Athanasopoulos & Kourentzes 2022).

Motivated by this, Kourentzes & Athanasopoulos (2019) proposed the notion of cross-temporal

hierarchies, where the hierarchy spans across both cross-sections and time, more accurately
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mapping the various forecasts required by decision-makers and stakeholders. They show that

sequential reconciliation across the cross-sectional and temporal dimensions, irrespective of

order, does not always result in coherent forecasts, and address this by estimating all cross-

sectional Gk, across the k temporal aggregation levels, which are then averaged in a common

cross-temporal Ḡ. They obtain holistically coherent forecasts, which are also the most accurate.

In their experiments the temporal reconcilation provided the biggest accuracy gain.

Motivated by the sequential algorithm of Kourentzes & Athanasopoulos (2019), Di Fonzo &

Girolimetto (2023a) propose an iterative version whereby the forecasts are alternately reconciled

in temporal and cross-sectional dimensions in a cyclic fashion, and find that it produces more

accurate forecasts.

A number of contributions recognise that there are potential accuracy benefits in reconciling

across both cross-sectional and temporal dimensions. Spiliotis et al. (2020), Yagli, Yang &

Srinivasan (2019), and Punia, Singh & Madaan (2020), apply sequentially temporal and cross-

sectional approaches, with Yagli, Yang & Srinivasan (2019) experimenting with the order of

reconciliation as well. They all identify accuracy benefits, but do not establish holistic coherence.

This sequential approach is discussed and improved by Di Fonzo & Girolimetto (2023b).

Rather than separately reconciling the cross-sectional and temporal dimensions, Di Fonzo &

Girolimetto (2023a) proposed a single reconciliation step, using the full cross-temporal hierarchy.

Following our notation, from the cross-sectional yt at the most temporally disaggregate level, let

yi,t denote its ith element, i = 1, . . . , n. For each i, we construct all the temporally aggregated

variants, giving a vector of length p:

xi,τ =


x[m]

i,τ
...

x[1]i,τ

 .

These can then be stacked into a long vector:

xτ =


x1,τ

...

xn,τ

 .
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With Scs and Ste denoting the structural matrices for the cross-sectional and temporal reconcilia-

tions respectively, the cross-temporal structural matrix is Sct = Scs ⊗ Ste, so that

xτ = Sctbτ,

where the bottom-level series

bτ =


x[1]1,τ

...

x[1]nb,τ

 .

Di Fonzo & Girolimetto (2023a) develop optimal cross-temporal reconciliation and evaluate it

against the heuristic approach of Kourentzes & Athanasopoulos (2019) and variants. They report

a relatively larger contribution to accuracy from the temporal side, and find that the optimal

approaches tend to be outperformed by the heuristic approaches. We note that in their experi-

ments all the approximations used for the cross-temporal Wh required some estimation, which

given the size of the cross-temporal matrices may explain the findings (Pritularga, Svetunkov &

Kourentzes 2021).

Cross-temporally reconciled forecasts offer relatively limited accuracy gains compared to one-

way reconciled forecasts (primarily temporally reconciled), with their major benefit being the

qualitative difference of being coherent across both dimensions. This is impactful within a

decision-making context and can be seen as a tool to sidestep organisational information silos,

and achieve aligned plans across different functions in organisations (Kourentzes & Athana-

sopoulos 2019). Kourentzes (2022) argues that cross-temporally coherent forecasts offer a

pathway towards so-called “one-number” forecasts, enabling the integration of independent

forecasts built for different functions and decisions that are typically based on different infor-

mation, with different horizons, and purposes. If these forecasts remain disconnected, they

can lead to misaligned decisions and organisational friction. In the cross-temporal case, some

nodes of the hierarchy are by-products of the structure, rather than directly connected with

some decision (Athanasopoulos & Kourentzes 2022). This raises questions how to best evaluate

the quality of these forecasts, given that the relevant metrics for different decisions may vary in

an organisational context.
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5 Probabilistic hierarchical forecasting and reconciliation

The period that saw growth in the development of methods for hierarchical forecasting and

reconciliation coincided with an increasing awareness of the importance of probabilistic fore-

casting. Therefore it is unsurprising that in recent years, a number of papers have attempted to

tackle the problem of probabilistic hierarchical forecasting. As in the case for point forecasting,

methods for obtaining probabilistic hierarchical forecasts can be split into bottom-up, top-down

and reconciliation approaches, although some algorithms combine elements of more than one

approach. Note that Bayesian approaches to probabilistic forecast reconciliation are discussed in

Section 3.8.

Bottom-up methods of probabilistic hierarchical forecasting were introduced by Ben Taieb,

Taylor & Hyndman (2017) and subsequently expanded on in Ben Taieb, Taylor & Hyndman

(2021). The algorithm is initialised by generating a Monte Carlo sample from the predictive

distribution of each bottom-level variable, which by construction are independent. To induce

dependence, these samples are first ranked, and then permuted series-wise. The permutations

are designed to ensure that the samples from bottom-level predictive distributions have the same

empirical copula as ‘in-sample’ forecast errors (residuals), taking care to exploit the hierarchical

structure to avoid dealing with very high-dimensional copulas. These are then aggregated to

yield a sample from the predictive distribution of all top-level series. This is summarised with a

simple example in Figure 5.

A ↓
1.4
2.3
1.7
2.1


B ↓
3.6
5.3
2.2
6.4

 rank⇒

A ⟳
1.4
1.7
2.1
2.3


B ⟳
2.2
3.6
5.3
6.4

 permute⇒

A
1.4
1.7
2.1
2.3

 +

B
3.6
2.2
6.4
5.3

 aggregate⇒

T
5.0
3.9
8.5
7.6


Figure 5: A toy example describing bottom-up approaches for probabilistic forecasting for a simple

3-variable hierarchy with T = A + B. A sample of size K = 4 has been drawn for two
bottom-level series A and B. These are then ranked from smallest to largest, then permuted so
that their empirical copula matches that of the residuals. The residuals are not shown here, but
in this example, the smallest residual in A coincides with the second smallest residual in B, the
second smallest residual in A coincides with the smallest residual in B and so on. Finally A
and B are aggregated to give a sample from the predicted distribution of the total series, T.

While the bottom-up algorithm does not use a top-level forecast at all, both Ben Taieb, Taylor &

Hyndman (2017) and Ben Taieb, Taylor & Hyndman (2021) propose an extension that incorpo-

rates top-level information, by adjusting the mean of each series to be equal to a reconciled point

forecast; for example, in Ben Taieb, Taylor & Hyndman (2021), MinT is used. A shortcoming of
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the bottom-up approach and its extension is that the sample drawn from the predictive distri-

bution and the sample of training data must be of equal size, making it ill-suited to problems

with a small amount of training data. This is overcome by Panamtash & Zhou (2018) and Zhao,

Wang & Zhang (2019) who rather than using Monte Carlo, estimate predictive quantiles directly

via quantile regression.

Panamtash & Zhou (2018) also propose a top-down method for producing probabilistically

coherent forecasts whereby quantile forecasts are first produced for all series. Proportions for

top-down disaggregation are then found by taking the ratio of a forecast of a child node to the

ratio of the forecast of the parent node. These are then applied to the original top-level forecasts.

To the best of our knowledge the only other top-down method for coherent forecasting has

been proposed by Das et al. (2023) who model future proportions based on past proportions

using a combination of an LSTM and multi-head self attention architecture. A sample from the

predictive distribution of the top level is generated and each observation from this sample is

disaggregated according to the forecast proportions.

Similar to the point forecasting case, progress has been made in extending the two-step reconcili-

ation approach whereby probabilistic forecasts are produced from all series, and then reconciled

to be coherent in a second step. Jeon, Panagiotelis & Petropoulos (2019) propose drawing a

sample from the predictive distribution of each series (both top- and bottom-level) and then

stacking these into a matrix. The matrix can then be pre-multiplied by a projection matrix SG to

obtain a sample from the coherent multivariate predictive distribution. One algorithm proposed

by Jeon, Panagiotelis & Petropoulos (2019), which they refer to as the ‘ranked sample’, orders

the observations drawn from each predictive distribution before pre-multiplying by SG. This

approach is described in Figure 6 and corresponds to reconciling quantiles; an idea that has

antecedents in Shang & Hyndman (2017) who reconcile prediction intervals. Quantiles are only

preserved under linear combinations when the data are perfectly dependent, however in cases

where dependence between series is high, the method of Jeon, Panagiotelis & Petropoulos (2019)

is shown to perform well.

Panagiotelis et al. (2023) make a number of contributions to probabilistic forecast reconciliation

by providing formal definitions for coherence and reconciliation that justify Monte Carlo ap-

proaches as well as finding reconciled probabilistic forecasts for elliptical distributions (including

the Gaussian). The Panagiotelis et al. (2023) framework allows any set of base forecasts, either

univariate, or multivariate (the latter until then had not been considered in the hierarchical

forecasting literature) to be reconciled using any reconciliation method. Reconciliation weights

Athanasopoulos, Hyndman, Kourentzes, Panagiotelis: 16 May 2023 32



Forecast reconciliation: A review

T ↓
6.2
8.3
3.6
3.4


A ↓
1.4
2.3
1.7
2.1


B ↓
3.6
5.3
2.2
6.4

 rank⇒

T
3.4
3.6
6.2
8.3


A

1.4
1.7
2.1
2.3


B

2.2
3.6
5.3
6.4


stack
⇓

T
[
3.4 3.6 6.2 8.3

]
A
[
1.4 1.7 2.1 2.3

]
B
[
2.2 3.6 5.3 6.4

] reconcile⇒ SG

3.4 3.6 6.2 8.3
1.4 1.7 2.1 2.3
2.2 3.6 5.3 6.4


Figure 6: A toy example describing the ranked sample approach to probabilistic forecast reconciliation for

a three variable hierarchy where T = A + B. A sample of size K = 4 has been drawn for the
top-level series T and two bottom-level series A and B. These are then ranked from smallest
to largest, then stacked, and reconciliation is applied (final reconciled forecasts depend on the
choice of G, and are not shown here).

are trained by optimising with respect to a multivariate scoring rule. Rangapuram et al. (2021)

also optimise with respect to scoring rules for probabilistic forecasts, but rather than train

reconciliation weights, they assume least squares reconciliation, with the novelty coming from

training forecasting models and reconciling in an end-to-end fashion rather than via the usual

two-step approach.

Despite very recent progress in forecast reconciliation, a number of open research questions

remain. In the case of point forecasting, the optimality of certain reconciliation techniques such

as MinT are now well understood. Similar results have not been derived for reconciliation

methods in the probabilistic setting with the exception of Wickramasuriya (2021a) who derive

the optimality of MinT in the Gaussian case. We expect a better understanding of the theoretical

and empirical properties of different probabilistic forecast reconciliation techniques in coming

years, including which methods produce forecasts that are well calibrated and whether their

prediction intervals achieve correct coverage rates.

6 Significant applications

6.1 Tourism

The new concept of forecast reconciliation was first implemented on tourism data in Athana-

sopoulos, Ahmed & Hyndman (2009). Tourism flows comprise aggregation structures across

various dimensions. The most obvious of these are geographic hierarchies. At an international

level, we have inbound travel from multiple countries or from regions within source countries,

to multiple destination countries, airports or regions within the destination countries. The same
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applies for outbound travel while similar geographic divisions are natural for domestic travel.

Further, policy makers and business planners are also interested in various characteristics of

tourists. For example, the expenditure patterns of holiday makers are very different to those

of business travelers or those visiting friends and relatives. Hence, grouped structures where

geographic hierarchies are crossed with various attributes of interest also naturally arise. An

attribute commonly observed for tourism flows is purpose of travel, which typically comprises

holidays, visiting friends and relatives, business, and other.

Athanasopoulos, Ahmed & Hyndman (2009) focus on two aggregation structures based on

quarterly tourism flows. A grouped structure where geographic divisions (Australia, States,

Capital city versus other) are crossed with purpose of travel (also considered in Hyndman

et al. 2011); and a pure geographic hierarchy where Australian domestic tourism flows are

disaggregated by States, Zones and Regions. Coherent forecasts were generated from traditional

bottom-up and top-down approaches based on historical proportions, as well a new top-down

approach based on forecast proportions and forecast reconciliation. The paper found that the

proposed top-down and reconciliation approaches improve forecast accuracy compared to the

traditional approaches, and provides detailed forecasts for Australian domestic tourism flows,

identifying some key features at both the aggregate and disaggregate levels that are crucial

for informing policy makers. Variations of these Australian tourism data have since become

ubiquitous for benchmarking forecast reconciliation methods. For example, Abolghasemi, Tarr &

Bergmeir (2022) propose what they refer to as conditional hierarchical forecasting, an approach

based on machine learning classification methods that use time series features to select the

reconciliation method for a hierarchy and evaluate the performance of the method based on the

pure geographic hierarchy. Gleason (2020) introduces an embedding reconciliation term that

penalizes deviation from an aggregation structure, and uses the grouped structure to evaluate

the forecasting performance of the proposed method, claiming improvements over MinT.

An updated and richer monthly Australian tourism data set was introduced in Wickramasuriya,

Athanasopoulos & Hyndman (2019). The geographic hierarchy comprises 111 series. In particu-

lar the total tourism flow is disaggregated to 7 states, 27 zones and 76 regions. The hierarchical

structure is crossed with the 4 purposes of travel, resulting in a total of 555 time series, of which

525 are unique (Di Fonzo & Girolimetto 2022b, online appendix). This data set or close variations

of it, is considered in several studies, including Kourentzes & Athanasopoulos (2019), Hollyman,

Petropoulos & Tipping (2021), Spiliotis et al. (2021) and Di Fonzo & Girolimetto (2022b).
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Karmy & Maldonado (2019) study ten different data sets, including three related to tourism.

The first one is a variation of the quarterly data set introduced in Athanasopoulos, Ahmed

& Hyndman (2009), using only the hierarchical structure based on the geographic divisions

(also used in Karmy, López & Maldonado 2023). They also consider a weekly dataset of flight

passengers between Melbourne and Sydney for an airline, disaggregated by flight ticket class

type (first class, business, and economy), and monthly departures from Australia disaggregated

into permanent, long-term, and short-term departures, and then between residents and visitors

for the cases of long- term and short-term departures. The paper presents forecasting methods

for hierarchical time series based on Support Vector Machines. These are compared to traditional

single-level approaches with the conclusion that a major limitation of the proposed methods is

the lack of data in a time series context.

Athanasopoulos et al. (2023) and Kourentzes et al. (2021) focus on tourism flows amid the

COVID-19 pandemic. Athanasopoulos et al. (2023) model both international inbound and

domestic flows for the case of Australia, while Kourentzes et al. (2021) analyse international

arrivals for the case of South Africa. The papers argue for the use of forecast reconciliation in

order to generate robust forecasts for tourism flows during the pre-COVID period.

6.2 Macroeconomics

Since macroeconomics is the study of aggregate economic phenomena, it is not surprising that

this field has provided fertile ground for hierarchical data. For example, Gross Domestic Product

(GDP) is constructed as an aggregate of individual components. The expenditure method

constructs GDP as an aggregate of expenditure characterized by consumption, investment,

imports and exports, while the income approach aggregates variables such as the gross operating

surplus of firms with employee compensation. Thus there are two hierarchies involved with the

same aggregated series. The structural formulation of the reconciliation problem does not allow

for this scenario, but the more general constraint formulation (Section 2.2) does.

As noted in Section 3.1, reconciliation of estimates (as distinct from forecast reconciliation) has a

long history in macroeconomics. For forecasting problems, forecasts of the disaggregate series

may be of direct interest, otherwise the objective may be to improve accuracy by leveraging

forecasts of the disaggregate series via reconciliation. Athanasopoulos et al. (2020), Bisaglia,

Di Fonzo & Girolimetto (2020) and Di Fonzo & Girolimetto (2022c) find evidence in favour

of forecast reconciliation in both of these settings for Australian GDP. In particular for both

point and probabilistic forecasts, improvements in forecast accuracy over base and bottom-up

methods can be achieved using forecast reconciliation. The MinT method is found to work best
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overall, while when attention is restricted to only the top-level series, weighted least squares is

found to be more accurate. Di Fonzo & Girolimetto (2023a) use the constraint representation

with a cross-temporal framework, and show that it leads to better forecasts on this data set.

Another important macroeconomic variable that admits a hierarchical structure is the consumer

price index (CPI). The CPI is constructed as a weighted price index of a basket of goods. As

such the novel aspect to reconciliation in this setting is that rather than a summing matrix

consisting only of ones and zeros, the S matrix includes weights that can change over time. In

an early application of reconciliation methodology, Capistrán, Constandse & Ramos-Francia

(2010) find that OLS reconciliation can improve upon a bottom-up approach for some but not

all components of Mexican CPI. For overall CPI, OLS improves upon a bottom-up approach,

however the difference between the forecast accuracy of these methods is not found to be

statistically significant. Weiss (2018) considers UK CPI and finds that reconciliation using OLS

performs better than traditional approaches for 1-month-ahead forecasts, but that middle out

approaches work better for longer horizons. Weiss (2018) also considers inflation volatility; in

this case, reconciliation methods do not outperform bottom-up.

While hierarchical structures are common in macroeconomics, certain details concerning the

construction of these datasets suggest new directions in reconciliation methodology. One

example, Koop et al. (2022) consider a geographic hierarchy of productivity, with a model

that includes growth rates in national and regional output. However, since chain volume

measures are used to construct output, with different price deflators for each region, regional

growth rates only add up to the national growth rate as an approximation. Since the usual

aggregation constraint only holds approximately, Koop et al. (2022) recommend shrinking

towards the aggregation constraint via a Bayesian approach rather than imposing a hard

constraint. Considering unemployment data from multiple labour force surveys in Brazil,

Lila, Meira & Cyrino Oliveira (2022) introduce robust estimation in the reconciliation stage with

primary aim to address measurement issues occurring in the original time series. These methods

are likely to generalise to other hierarchical forecasting problems in macroeconomics and other

disciplines.

6.3 Energy

Energy applications are widespread in the forecast reconciliation literature due to the natural

geographic hierarchies that arise in energy distribution. For example, both the GEFCom2012

(Hong, Pinson & Fan 2014) and GEFcom2017 (Hong, Xie & Black 2019) energy forecasting
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competitions included hierarchical electricity load data, although none of the participants took

advantage of the hierarchical structure to improve their forecasts.

One of the earliest uses of forecast reconciliation applied to energy data was van Erven &

Cugliari (2015), discussed earlier, who applied their methods to electricity demand data from

Électricité de France, disaggregated into 17 tariff groups.

Three interesting examples of forecast reconciliation of electricity load are due to Ben Taieb

and his coauthors. Ben Taieb et al. (2017) propose a regularized version of MinT reconciliation

with penalties analogous to those used in LASSO and elastic-net regressions, giving sparse

adjustments to the base forecasts. They apply the method to electricity consumption measured

by 5701 smart meters with a rich geographic hierarchy. Ben Taieb, Taylor & Hyndman (2017) and

Ben Taieb, Taylor & Hyndman (2021) each developed new probabilistic reconciliation methods

(discussed in Section 5), and applied them to the same dataset.

Zhao, Wang & Zhang (2019) proposed a computationally simpler variation of the method of Ben

Taieb, Taylor & Hyndman (2017), and applied it to two public data sets: the ISO New England

data from Hong, Xie & Black (2019), and some Irish smart meter data aggregated to groups

of 100 customers. Roach (2019) also studies the ISO New England data from the Hong, Xie &

Black (2019) and proposes a method based on generating reconciled quantile forecasts using a

gradient boosted model which is shown to outperform the benchmark.

Brégère & Huard (2022) also tackle load forecasting, but introduce an innovation by including an

“aggregation algorithm” before reconciling the forecasts. This aggregation algorithm involves

computing revised base forecasts that are linear combinations of the base forecasts of all series.

The revised base forecasts are then reconciled using OLS reconcilation. This approach means

that any cross-sectional relationships between series are modelled in the aggregation step rather

than the reconciliation step. The authors applied this approach to the same dataset used by Ben

Taieb, Taylor & Hyndman (2017).

Forecast reconciliation has also been used in solar generation forecasts. Here, power generated

by distributed photovoltaics (PV) are naturally disaggregated in a geographic hierarchy such as

transmission zones, distribution nodes, PV plants, subsystems and inverters. Yang et al. (2017a)

explored the application of MinT reconciliation and some of its special cases to hourly generation

data from 318 power plants in California, USA, while Yagli, Yang & Srinivasan (2020) applies

probabilistic (Gaussian) MinT reconciliation to the same data set. The data set is used again in

Yang et al. (2017b), applying temporal reconciliation methods, and in Yagli, Yang & Srinivasan

(2019), where both cross-sectional and temporal reconciliation are considered. They apply the
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cross-sectional and temporal reconciliations sequentially, rather than simultaneously. Di Fonzo

& Girolimetto (2022a) and Di Fonzo & Girolimetto (2023a) critique this two-step approach and

argue for simultaneous cross-temporal reconciliation, but show that the two approaches can

be equivalent if the covariance matrices used in both steps are constant across levels and time

granularities. They further show how the forecasts can be constrained to be non-negative using

the simple approach of setting any negative bottom-level reconciled forecasts to zero, and then

aggregating the results.

Another application to solar power is Panamtash & Zhou (2018), who applied the probabilistic

reconciliation methods they developed (discussed in Section 5) to 5-minute solar power data

for about 6000 simulated PV plants in Florida, USA. A further application to energy data is

Gilbert, Browell & McMillan (2018) who produce probabilistic forecasts of wind power for

individual turbines, and for the entire wind farm. An innovative feature is the use of a weighted

aggregation based on an elastic net penalized regression. Bergsteinsson et al. (2021) propose an

adaptive reconciliation method for temporal hierarchies by allowing for time-varying weights.

They use this approach to improve the accuracy of heat load forecasts.

6.4 Mortality rates

Applications of forecast reconciliation in mortality started with Shang & Hyndman (2017), who

forecast Japanese mortality rates disaggregated by age, sex, and by a geographic hierarchy of 47

prefectures within 8 regions. The base forecasts were obtained using a functional data method.

Because mortality rates do not sum directly, they proposed an aggregation matrix A comprising

population ratios. For example, for the mortality rate of 50-year-old females within a region,

the non-zero values of the corresponding row of the A matrix contains the 50-year-old female

population of each prefecture divided by the total 50-year-old female population of the region.

Thus, the aggregation matrix A is time-varying, and the values for the future time periods were

forecast using univariate time series models. WLS reconciliation was used. Shang & Haberman

(2017) provide an application to annuity pricing using an identical approach to the same data

set. Li & Hyndman (2021) used a similar formulation, but applied MinT reconciliation to US

age-sex-specific mortality rates, and explored future mortality inequality.

Li et al. (2019) consider forecasting mortality due to different causes of death and show that

forecast accuracy is improved by reconciliation. Although the data form a simple two-level

hierarchy with bottom-level series and their aggregate, the authors combine individual causes of

death into middle level series. This is done via hierarchical clustering on the data. Augmenting
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the hierarchy with middle level series in this fashion, leads to further improvement in forecast

accuracy.

Li & Tang (2019) use a forecast reconciliation approach to forecast a longevity divergence index

(LDI), used to compute the Swiss Re Kortis bond. The most disaggregated series in the hierarchy

are age-specific mortality improvement rates in the US and UK, while the most aggregated series

are LDI values, expressed as linear combinations of these disaggregated series. They use a MinT

approach to generate probabilistic forecasts, following Jeon, Panagiotelis & Petropoulos (2019).

6.5 Retail demand & supply chain

Forecasting for demand planning has been an attractive application for hierarchical forecasting

and therefore it has attracted attention in the literature. Rostami-Tabar et al. (2015) look at

the conditions where top-down or bottom-up is favourable assuming that the disaggregate

series are ARIMA(0,1,1) processes, using the reconciliation approach as a benchmark. The

latter is found to be more accurate overall, with the bottom-up method outperforming it in

some cases, particularly for the bottom-level time series. Yang et al. (2016) using the publicly

available Dominick’s Finer Food dataset find that the shrinkage estimator for W1 performed

better than classic hierarchical methods (bottom-up and top-down). Oliveira & Ramos (2019)

find the same conclusion on data from a Portuguese supermarket. Mircetic et al. (2022) look at

sales of a major European brewery and find that hierarchical reconciliation performs better than

base forecasts. They also propose combining the bottom-level forecasts of different hierarchical

forecasting methods and then construct the forecasts for the rest of the hierarchy using a bottom-

up approach. They argue that this method has the advantage that it eliminates the need to

select a hierarchical approach and find small gains over the reconciliation method. Karmy &

Maldonado (2019) explore the performance of hierarchical forecasting on sales in the travel retail

industry. They do not consider the reconciliation approach and find bottom-up to be best.

Villegas & Pedregal (2018) propose encapsulating cross-sectional hierarchical reconciliation

in a state-space formulation, together with the forecasting model. Using simulations and an

empirical investigation on a Spanish grocery retailer, they find that the standard reconciliation

performs well for short horizons (1–3 days), while for longer horizons (4–7 days) the state-space

based reconciliation is best and is also the overall most accurate method.

Other applications include the contributions of abolghasemi2022machine, Abolghasemi, Tarr

& Bergmeir (2022), and Spiliotis et al. (2021) who investigate the application of hierarchical fore-

casting on data from a food manufacturer in Australia. Finally, the M5 forecasting competition

used data from Walmart, a major US retailer, with a grouped time series structure, providing a
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test bed for reconciliation methods (Makridakis, Spiliotis & Assimakopoulos 2022). We provide

further details of these works in Section 3.7.

6.6 Intermittent demand

Hierarchical forecasting has seen some application in intermittent demand modelling. However,

in reviewing these papers it is useful to consider that the literature has progressed substantially

over the last years in terms of how to evaluate forecasts of intermittent demand time series

(Kourentzes 2014; Kolassa 2016; Athanasopoulos & Kourentzes 2022), recognising that classic er-

ror metrics, especially those based on absolute errors, are often inappropriate. Direct evaluation

on decision metrics, such as inventory metrics, or the predictive distribution are preferable.

One of the earliest works using hierarchical forecasting for intermittent demand is by Moon,

Hicks & Simpson (2012) who looked at top-down hierarchical forecasts, against combination and

base forecasts for predicting spare parts for the South Korean navy. In the reported inventory

cost, the top-down approach offers benefits in some settings, but overall is outperformed by

combination methods. It should be noted that the hierarchy that was used in this work was

constructed by the researchers and its eventual structure may have been significant for the

findings.

Petropoulos & Kourentzes (2015) provide a translation of the temporal MAPA algorithm

(Kourentzes, Petropoulos & Trapero 2014) for intermittent demand. It is used to forecast

spare parts for the UK Royal Air Force. They find it outperforms various benchmarks, including

ADIDA that relies on a single temporal aggregation level (Nikolopoulos et al. 2011), and vari-

ous combinations of forecasts. However, the empirical evaluation lacks decision or predictive

distribution related metrics.

Li & Lim (2018) provide a top-down-like hierarchical forecasting method for predicting in-

termittent demand in fashion retailing. Their approach produces separately daily forecasts

of the aggregate demand across multiple items, and a forecast of the inter-demand interval

and demand size for each individual item. The latter forecasts are used to prorate the total

forecast into the individual items. Although the proposed algorithm performs well against

benchmarks, the empirical evaluation lacks other cross-sectional reconciliation benchmarks and

strong performance metrics.

Kourentzes & Athanasopoulos (2021) investigate the use of temporal hierarchies for intermittent

demand forecasting for aerospace spare parts. Their motivation is that a method that predicts

well the intermittent pattern should be able to demonstrate the various patterns (such as
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seasonality and trend) that may appear when the data are explored at lower sampling frequency.

They demonstrate that the use of temporal hierarchies allows the capture of these patterns at

higher temporal aggregation levels and combining this information with intermittent demand

forecasts of the original time series, results in reconciled forecasts that dominate the base

forecasts on a variety of metrics and horizons. They obtain prediction intervals using the

empirical distribution of the reconciled forecasts and provide a heuristic to ensure non-negative

forecasts.

6.7 Healthcare, accidents & emergencies

Athanasopoulos et al. (2017) applied temporal hierarchies to predict weekly admissions for

Accidents & Emergency wards in UK hospitals. The volume of patients relates to different

decisions in the operations of the wards, from staff scheduling, to procuring consumables,

training and hiring of staff, etc. They showed that temporally coherent forecasts dominated base

forecasts in all cases.

Pritularga, Svetunkov & Kourentzes (2021) looked at weekly Accidents & Emergency cases for a

specific hospital, and were interesting in producing cross-sectionally coherent forecasts across

various patient demarcations. They compared a variety of approximations for Wh, controlling

for the sample size, and found that hierarchical forecasts were universally better than the base

forecasts. They also showed that the complexity of the approximation is important, with simpler

ones performing best at smaller sample sizes, and more complex ones gaining a substantial

advantage when there were sufficiently long time series.

Weiss (2018) investigated improving the staffing for a large UK teaching hospital. Hierarchical

forecasts were found to provide more accurate forecasts than the benchmark used by the hospital.

Further, when the forecasts were used in a staffing model, they resulted in cheaper operations

and less under-staffing.

7 Open-source software implementations

The first available open-source implementation of forecast reconciliation methods was the hts

package for R (Hyndman, Ahmed & Shang 2010), which helped popularise cross-sectional

point forecast reconciliation methods in business and industry. The hts package has continued

to be developed, and its latest version (Hyndman et al. 2021) includes implementations of

Wickramasuriya, Athanasopoulos & Hyndman (2019) and Wickramasuriya, Turlach & Hyn-

dman (2020). The game-theoretic approach of van Erven & Cugliari (2015) is implemented
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in the gtop package for R (Cugliari & Erven 2015). Temporal point forecast reconciliation is

provided in the thief package for R (Hyndman & Kourentzes 2018). Cross-sectional, temporal,

and cross-temporal point forecast reconciliation with optional non-negativity constraints is

provided by the FoReco package for R (Girolimetto & Di Fonzo 2022). The score optimization

approach of Panagiotelis et al. (2023) is implemented in the ProbReco package (Panagiotelis

2020). Probabilistic cross-sectional forecast reconciliation is also included in the fabletools

package for R (O’Hara-Wild, Hyndman & Wang 2023), with a very simple user interface for

specifying complicated hierarchical and grouping structures.

There are also several Python implementations of the methods, including the pyhts package

of Zhang, Kang & Li (2022), which is a python translation of Hyndman et al. (2021), and Darts

(Herzen et al. 2023, 2022) which provides similar functionality. The hierarchicalforecast

package (Olivares et al. 2022b, 2023) provides a more comprehensive suite of functions covering

both point and probabilistic forecast reconciliation including the methods of Ben Taieb, Taylor

& Hyndman (2017), Ben Taieb & Koo (2019), Wickramasuriya, Athanasopoulos & Hyndman

(2019), and Panagiotelis et al. (2023). The method of Rangapuram et al. (2021) is implemented in

GluonTS (Alexandrov et al. 2023).

8 Conclusion

Research into hierarchical time series and forecast reconciliation has seen great success and

impact, particularly over the last decade. At this juncture we wish to speculate on what the

next decade holds in store by identifying some key open questions. We anticipate growth in the

following areas.

The breadth of data to which reconciliation methods need to be applied necessitates the extension

of methods to non-standard domains. This includes non-negative data (for which there is

existing work by Wickramasuriya, Turlach & Hyndman 2020, amongst others), discrete data (for

which Corani et al. (2021), Olivares et al. (2022a) and Zambon, Azzimonti & Corani (2022) give

early attempts to address the issues), and finally mixtures of discrete and continuous data. The

latter could be potentially useful for zero inflated data (which arise in intermittent sales data) or

where there are hierarchies where some bottom-level series are best modelled as discrete, while

the top -level series are best modelled as continuous. The development of algorithms to handle

these cases, as well as understanding the theoretical properties of reconciliation in such settings,

represents a bold research agenda.
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While recent progress has been made in probabilistic forecasting, as discussed in Section 5,

there are a number of open questions on the properties of probabilistic forecast reconciliation.

For example, what are the coverage properties of prediction intervals derived from reconciled

forecasts, how do these depend on the coverage properties of the base forecasts themselves

and does reconciliation even improve coverage relative to base forecasts? These questions are

particularly vexed since reconciled probabilistic forecasts are defined on a domain that is a linear

subspace. As such, it may be more fruitful to think of coverage in terms of highest density

regions (Hyndman 1995) rather than prediction intervals.

An often stated advantage of coherent forecasts is that they have the potential to lead to aligned

decisions. However the attempts to quantify this effect have been limited. Where gains in

forecast accuracy due to forecast reconciliation have been established, forecast evaluation is

often based on general purpose metrics such as RMSE and MAE as well as scaled versions thereof.

These metrics do not explicitly penalise incoherence in forecasts particularly when, as is often

the case, the forecasts of different variables are evaluated individually. The disconnect between

metrics of forecast evaluation and the operational considerations of hierarchical forecasting may

explain why hierarchical methods have not been popular in forecasting competitions such as the

M5, even where the data follow a hierarchical structure. Therefore we anticipate the development

of new forecast evaluation metrics that account for the multivariate and hierarchical nature

of the data. Further, we concur with the view of Athanasopoulos & Kourentzes (2022) that

forecast evaluation must be integrated with the decisions made by agents at different levels of

the hierarchies.

This issue opens up additional questions related to the game theoretic aspects of hierarchical

forecasting. Most empirical work to date shows that even where reconciliation improves forecast

accuracy, these improvements do not occur across all levels of the hierarchy. In some applications,

improvements may be seen in forecasts of bottom-level series after reconciliation, while base

forecasts at the top level still outperform the top-level reconciled forecast. In other applications,

the reverse may be true. This has a number of interesting implications in an organisational

setting where those making forecasts at different levels can be treated as separate agents. Can

reconciliation methods be found that lead to Pareto improvements across the hierarchy meaning

all agents gain from reconciliation? If not, in a cooperative setting, can forecast reconciliation,

and the decisions agents make based on these forecasts be aligned to improve overall welfare of

the organisation? Also, in a competitive setting, can compensation mechanisms be developed

to encourage agents at different levels of the hierarchy, each making forecasts based on their
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own information sets to share base forecasts for reconciliation? These open questions should

stimulate research for years to come.
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