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Abstract: Epidemiological studies have consistently shown short term associa-
tions between levels of air pollution and respiratory disease in countries of di-
verse populations, geographical locations and varying levels of air pollution and
climate. The aims of this paper are: (1) to assess the sensitivity of the observed
pollution effects to model specification, with particular emphasis on the inclusion
of seasonally adjusted covariates; and (2) to study the effect of air pollution on
respiratory disease in Melbourne, Australia.
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1 Introduction

1.1 Background

The adverse effects of air pollution on respiratory disease have been widely
documented in countries of diverse populations, geography and climate.
Recently, there has been some effort to determine the replicability of these
findings across a range of exposure outcomes. For example, the APHEA
(Air Pollution and Health, a European Approach) produced a standard
protocol designed to assess replicability across different countries (Kat-
souyanni et al. 1996).

We extend this work on replicability by examining the robustness of the
estimated relationships between air pollution and respiratory disease under
different statistical models. The work is motivated by the idea that applica-
tions of different statistical models with varying underlying methodological
assumptions may lead to different conclusions regarding the air pollution
and respiratory disease relation.

1.2 Data

COPD (Chronic Obstructive Pulmonary Disease) and asthma hospital ad-
missions from all short-stay acute public hospitals in Melbourne, registered
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on a daily basis by the Health Department of Victoria, were used as re-
sponse variables for the period 1 July 1989 to 31 December 1992. Interna-
tional Classification of Disease (ICD) codes for COPD (490-492, 494, 496)
and asthma (493) were used to define COPD and asthma.

Air pollution data were obtained from the Environment Protection
Authority (EPA). Maximum hourly values were averaged each day across
nine monitoring stations in Melbourne, for nitrogen dioxide, sulfur dioxide,
and ozone, all measured in parts-per-hundred-million (pphm). Particulate
matter was measured by a device which detects back-scattering (Bseqt) of
light by visibility-reducing particulates between 0.1 and 1pm in diameter.
Air particles index (API) were derived from Bgeqr X 10~%. Meteorological
data include three hourly maximum daily levels of relative humidity, dry
bulbs temperature and dew point temperature. The measures were aver-
aged across four monitoring stations in the Melbourne area.

1.3 Statistical Methodological Issues

A key issue which arises in studies of respiratory disease and pollution
is controlling for seasonal variation. Several variables may be confounded
with seasonality, leading to some possible spurious pollution effects.

To assess the strength and magnitude of seasonal variation in the pol-
lutants and climatic variables, we utilise a method of seasonal adjustment
called STL (Seasonal-Trend decomposition based on Loess smoothing) de-
veloped by Cleveland and Terpenning (1982). Covariates exhibiting strong
seasonality were adjusted with the STL method and the resulting season-
ally adjusted series were used in subsequent analysis.

We explore the robustness of the pollution-respiratory disease rela-
tion using a variety of regression type approaches, controlling for secu-
lar trends, seasonality, and confounding effects of climate. These models
include: (1) Generalized Linear Models (GLM); (2) Generalized Additive
Models (GAM); (3) Parameter Driven Poisson Regression Models (PDM);
and (4) Transitional Regression Models (TRM). In each case, we consider
models based on a Poisson distribution, incorporating over-dispersion and
serial correlation where possible.

2 Statistical Models

2.1 Generalized Linear Models

For a Generalized Linear Model (GLM) with a log link function, we specify
the expectation of a random variable Y; as

E(Y:| X:) = exp(ﬂo +Z&Xm). (1)
=1
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Refer to McCullagh and Nelder (1989) for a detailed discussion of GLMs.

Here Y; denotes daily counts of respiratory disease and air pollution
and Xy = (X¢1,...,X:,)" denotes the explanatory variables at time t. We
assume an overdispersed Poisson model, estimated using a quasi-likelihood
approach. Akaike’s Information Criterion, ATC (Akaike, 1973) was used for
variable selection.

2.2 Generalized Additive Models

A nonparametric alternative to the parametric GLM is the Generalized
Additive Model (GAM). GAMs allow non-linear relations between the
response variable and each explanatory variable (Hastie and Tibshirani,
1990). For a GAM, we assume

E(Y;|X:) = exp <ﬂo + Zgi(Xt,i)> (2)

=1

where each g; is a smooth, possibly non-linear, univariate function. Any of
the g; can be made linear to obtain a semi-parametric model. As with a
GLM, we use quasi-likelihood estimation.

Cubic smoothing spline’s were used to estimate the non-parametric
functions g;. We fix the smoothing parameter to be that value for which g;
has four “degrees of freedom” (see Hastie and Tibshirani, 1990).

A step-wise model selection procedure in S-PLUS (1999) was used
to determine the optimal GAM. Both linear and non-linear terms were
allowed for each covariate, and the step-wise procedure automatically se-
lected whether each covariate should be included, and if so, whether it
should be linear or non-linear. The AIC was used in this algorithm for
variable selection.

2.3 Parameter Driven Models

In this section we include Zeger’s (1988) extension of parameter driven
models (PDM) for serially correlated time-ordered count data using results
from quasi-likelihood. In a parameter driven model, serial correlation is set
up through an unobservable latent process. A Poisson regression model has
conditional mean

E(Yiler, Xi) = exp(X(B + et), (3)

where B denotes a vector of paramters, and €; is a latent process allowing
both overdispersion and autocorrelation in Y;. We allow ¢, to follow a first-
order autoregressive process.
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2.4 Transitional Regression Models

Transitional Regression Models were introduced by Brumback et al. (2000).
To specify the general model, let Dy denote the present and past covariates
and the past response at time t. That is, Dy = (Y™, X*), where Y!~1 =
(Y1,...,Y;_1) and Xt = (X1,...,Xy). Also, the conditional mean and
variance of Y; given past responses and the covariates are defined as py =
E(Y:| D) and vy = var(Y:|Dg).

The transitional model has conditional mean given by

h(p) = X[B+ > 0;f(Dy), (4)

i=1

where h is a link function, f/s represent functions of the past outcomes,
and B8 = {f1,02,...,0-} and 8 = {61, ...,0,} are vectors of parameters.

In this paper we present a special case of a TRM, defined as GLM
with time series errors. For a Poisson with AR(1) errors, p: = exp(X;08) +
t1eq_1/Ur, where e, = (Y; —v¢)//vy and vy = exp(X;3). Here e; is scaled
to give constant variance. Note that e; = ie;—1 + &; where {d;} is an
independent series with zero mean.

3 Asthma and COPD hospital admissions in
Melbourne, Australia from 1 July 1989 to 31
December 1992

Each of the four models was fitted to the asthma and COPD hospital
admissions data. To simplify the analysis of seasonality, we excluded the
leap days of 29 February 1992 in each series. The following covariates were
considered for each model.
e Fourier series functions sin(2mj¢/365) and cos(2mjt/365) for j =
1,2,...,J. The value of J was chosen using the AIC. For COPD
admissions, J = 4 and for asthma admissions, J = 10.

e Time trend (a quadratic time trend was considered for GLM, PDM
and TRM).

e Day of week factor.

e Seasonally adjusted climatic variables: dry bulb temperature and hu-
midity.

e Seasonally adjusted pollutants: nitrogen dioxide and ozone.

e Non-seasonally adjusted pollutants sulphur dioxide and the air par-
ticles index (API).

For sulphur dioxide and API, there was virtually no seasonality observed.
Lagged values of each of the climatic and pollutant covariates were consid-
ered up to five days previously.
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To allow comparison across different statistical models we use the fol-
lowing three measures:

e Mean square error (MSE) = mean {(Yt — ?})2}, where Y; are the
(inverse link transformed) fitted values.

e Mean square proportional error (MSPE) = mean {(Y; — }%)2/}%}

e AIC = nlog(c?) + 2p, where o2 is the variance of the raw residuals
(response minus fitted values), and p is the number of degrees of
freedom in each model.

Table 1 displays results from the analyses of COPD and asthma hos-
pital admissions, using different statistical methods. Where a variable has
been included in a linear function, the relative risk is shown. For the GAM,
variables which were included using a smoothing spline are denoted by g(+).

TABLE 1. Relative Risk and 95% CI of COPD and asthma admissions for an
increase from the 10th to 90th percentile for levels of pollutants, generated using
different statistical methods.

COPD

GLM GAM PDM TRM
Pollutant | RR  95%CI | RR 95% CI | RR 95%CI | RR 95% CI
NOg ¢ 1.06 1.00-1.12|1.06 1.01-1.11 |1.05 1.00-1.11)1.05 1.00-1.10
O3,t—2 1.06 1.00-1.11
APIL;_» 0.95 0.91-1.00
SO2,:—2 g()
MSE 13.23 12.76 12.88 12.29
MSPE 1.24 1.19 1.13 1.16
AIC 3340.42 3292.19 3252.84 3243.09
Asthma

GLM GAM PDM TRM
Pollutant | RR  95%CI | RR 95% CI | RR 95%CI | RR 95% CI
NOg+ 1.05 1.01-1.08 [ 1.05 1.01-1.09 [1.04 1.01-1.08 | 1.05 1.02-1.08
NOg2,t-1 0.96 0.92-0.99
O3, 0.97 0.93-1.00
O3,t-1 0.96 0.93-0.99 0.97 0.94-1.09 [ 0.97 0.95-0.99
O3,t-2 g()
API;
SO2¢
MSE 57.81 53.68 56.05 55.8
MSPE 1.75 1.61 1.70 1.69
AIC 5244.03 5153.41 5207.56 5206.92

Daily COPD hospital admissions increased significantly with increased
ambient outdoor levels of same day nitrogen dioxide (NO3). The observed
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effects for ambient outdoor levels of ozone were highly sensitive to model
specification and different statistical models. In this study the relationships
between particulates (API) and both COPD and asthma hospital admis-
sions were non-robust, because the estimated effects varied depending on
the statistical methodology employed in the analysis. The relationship be-
tween sulfur dioxide and COPD was also non-robust, as was the relationship
between ozone and both COPD and asthma admissions.
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Sulfur dioxide (lag 2)

FIGURE 1. The nonlinear function for sulfur diozide (lagged 2 days). Dashed
lines represent pointwise 95% confidence intervals.

A GAM analysis showed a nonlinear relationship between sulfur diox-
ide and COPD hospital admissions in Melbourne, Australia (see Figure 1).
This is similar to that found in London (Schwartz and Marcus, 1990) and
Europe (Touloumi et al. 1994).

In this study, GLMs were inadequate because of the serial correlation
remaining after controlling for trend, seasonality and climate. The inclusion
of nonlinearities in a GAM analysis of COPD hospital admissions removed
most of the correlation pattern in the residuals from a GLM analysis. How-
ever, a GAM was inadequate in representing the short-term association
between asthma hospital admissions and air pollution. Significant residual
correlation remained even after the inclusion of seasonally adjusted covari-
ates, seasonal terms for the response variable, a time trend and confounding
effects of climate.

A parameter driven Poisson regression model was adequate in rep-
resenting the remaining correlation pattern in the residuals from a GLM
analysis of COPD hospital admissions. Although, similar to the GAM anal-
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ysis, a small but significant lag three correlation remained. A parameter
driven Poisson regression model with an AR(1) process for the covariance
structure, for daily asthma hospital admissions was inadequate.

A TGLM (transitional generalized linear model) was fitted to COPD
hospital admissions and was adequate in representing the correlation pat-
tern of the residuals with an AR(1) process. A TGLM of asthma hospital
admissions and air pollution was inadequate due to the strong correlation
pattern in the residuals.

4 Conclusion

This study extends recent epidemiological studies by focusing on the fol-
lowing question: How robust is the observed pollution-respiratory disease
relation to different statistical models with various underlying methodolog-
ical assumptions?

The statistical methodologies adopted in this study are all variations of
regression methods. They range from popular nonnormal methods (gener-
alized linear and additive models), to recently developed parameter and
observation driven models (Poisson regression with autocorrelation and
transitional regression models).

Table 2 displays the strengths and weaknesses of each model adopted
in this study. A + indicates a strength and — indicates a weakness of the
methodology.

TABLE 2. Strengths and weaknesses of the statistical methods used in this study.

TF GLM GAM Par. Driven TRM

Methodological Issues

Nonnormality - —+ + + +
Overdispersion - + + + +
Nonlinearity - - + - _
Autocorrelation + - - + +

The utility of GAM methodology for the analysis of respiratory disease
and air pollution is demonstrated in this study. Although the GLM with
time series errors adequately represented the correlation pattern in COPD
admissions, the model was unable to capture the non-linear effect of sulfur
dioxide. No model was adequate in representing the correlation pattern in
asthma admissions.

The findings from this study show that the relation between ambient
outdoor concentrations of nitrogen dioxide and COPD hospital admissions
is consistent and robust to different statistical methodology. The findings
for levels of ozone, sulfur dioxide and particulates are highly sensitive to
model specification.
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