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A state space model for exponential

smoothing with group seasonality

Abstract: We present an approach to improve forecast accuracy by simultaneously forecasting

a group of products that exhibit similar seasonal demand patterns. Better seasonality estimates

can be made by using information on all products in a group, and using these improved

estimates when forecasting at the individual product level. This approach is called the group

seasonal indices (GSI) approach, and is a generalization of the classical Holt-Winters procedure.

This article describes an underlying state space model for this method and presents simulation

results that show when it yields more accurate forecasts than Holt-Winters.

Keywords: common seasonality, demand forecasting, exponential smoothing, Holt-Winters,

state space model.
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1 Introduction

In business, often demand forecasts for many hundreds or thousands of items are re-

quired, and thus must be made in an automatic fashion. For this reason, simple extrap-

olative methods are widely used in practice. The standard methodology is to forecast

each product’s demand separately. However, data at this level is usually subject to a rela-

tively large amount of noise. More accurate forecasts can be made by considering groups

of products that have similar demand patterns.

In this article, our particular interest is in groups of products with similar seasonal pat-

terns for which forecasts are made by exponential smoothing methods. Since exponential

smoothing characterizes seasonality by a set of seasonal indices, we refer to this as the

group seasonal indices (GSI) approach. In this approach, seasonal indices are estimated us-

ing information on all products in a group and used when forecasting at the individual

product level. This improves the quality of the seasonality estimates, thereby resulting

in more accurate forecasts. Because there is only one observation for each seasonal index

per complete cycle (e.g., a year), there is opportunity for improving seasonality estimates.

In this article, we present a statistical framework for this GSI approach, which is a gener-

alization of the classical Holt-Winters procedure (Holt, 1957; Winters, 1960).

Publications on group seasonality approaches can be traced back to Dalhart (1974), who

first proposed to estimate seasonality from aggregate data. Later, this was extended by

Withycombe (1989) and Bunn and Vassilopoulos (1993, 1999). All studies report the im-

provement potential of their methods over standard methods. However, the experiments

are only on a small scale and only focus on short term forecasts. Besides, seasonal indices

are assumed to be fixed through time. Once they are estimated, they are not updated

in subsequent periods. In the current article, an approach is studied that is based on

smoothing of the seasonal estimates. The approach updates level and trend components

at the item level, while the seasonal component is updated using a pooled seasonality

estimate. Empirical results (Dekker et al., 2004; Ouwehand et al., 2004) have shown sig-

nificant improvement potential over the Holt-Winters method.

All earlier publications present only empirical and simulation experiments to establish

the potential improvement of a GSI approach. In Chen (2005), a first theoretical compar-

ison is given of the methods of Dalhart (1974) and Withycombe (1989). These methods
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are compared with a traditional individual seasonal indices method and conditions are

derived under which one method is preferred to the other. However, data processes

are considered for which the methods studied are not necessarily the most appropriate

choices.

In the next section, we develop a statistical framework that specifies the data processes

for which our GSI method is the optimal forecasting approach. It provides a statistical

basis for the GSI approach by describing an underlying state space model for the GSI

method. For data following this model, GSI generates forecasts with minimal forecast

error variances. The model is an extension of the model underlying the Holt-Winters

method, described in Ord et al. (1997) and Koehler et al. (2001).

In Section 3, we present a simulation study that determines in which situations GSI yields

better forecasts than Holt-Winters, and that gives an indication of how much the accuracy

can be improved under various parameter settings and types of demand patterns. The

main results are that GSI performs better than Holt-Winters if there is more similarity in

a group’s seasonal patterns, under larger amounts of noise, for larger and more homoge-

neous groups, for longer forecast horizons, and when less historical data is available.

2 Group seasonal indices

2.1 Model

In this section, we present a theoretical framework for the GSI approach. By identifying

an underlying model, we determine for which data processes GSI is the optimal method.

For data following the underlying model, the method generates forecasts with a mini-

mal Mean Squared Error (MSE). The model is a generalization of the models underlying

the Holt-Winters method, as described in Ord et al. (1997) and Koehler et al. (2001). The

model underlies the GSI method, which pools the time series to improve forecasts, and

which is a generalization of the Holt-Winters method.

Our focus is on multiplicative seasonality. Although seasonality could include the addi-

tive case, it is less likely that in practice a group of time series can be found with the same

additive seasonality. Since the GSI method is thus nonlinear, there will not be an ARIMA

model underlying this method. However, the class of state space models has provided a
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way to underpin this method. Since the resulting models are also nonlinear, the standard

Kalman filter does not apply. Nonlinear state space models with multiple sources of error

are usually estimated using quasi-maximum likelihood methods in conjunction with an

extended Kalman filter.

In Ord et al. (1997) a class of nonlinear state space models is introduced that have only

one disturbance term. These simpler models can be estimated by a conditional maximum

likelihood procedure based on exponential smoothing instead of an extended Kalman

filter. One of the models in this class is the model underlying the multiplicative Holt-

Winters procedure. The minimum mean squared error updating equations and forecast

function for this model correspond to those of the HW method. The model is based on

a single source of error (Snyder, 1985), and a multiplicative error term (Ord and Koehler,

1990). The model has a single noise process describing the development of all time series

components, and is specified by

yt = (ℓt−1 + bt−1)st−m + (ℓt−1 + bt−1)st−mεt (1a)

ℓt = ℓt−1 + bt−1 + α1(ℓt−1 + bt−1)εt (1b)

bt = bt−1 + α2(ℓt−1 + bt−1)εt (1c)

st = st−m + α3st−mεt (1d)

where yt denotes the times series, ℓt is the underlying level, bt the growth rate, and st the

seasonal factor. The number of seasons per year is equal to m. Furthermore, εt are serially

uncorrelated disturbances with mean zero and variance σ2
ε . Solving the measurement

equation for εt and substituting for εt in the transition equations gives the error-correction

form for these models:

ℓt = ℓt−1 + bt−1 + α1et/st−m (2a)

bt = bt−1 + α2et/st−m (2b)

st = st−m + α3et/(ℓt−1 + bt−1) (2c)

with et = yt − (ℓt−1 + bt−1)st−m. The initial states ℓ0, b0 and s−m+1, . . . , s0 and the pa-

rameters have to be estimated, after which consecutive estimates of ℓt, bt and st can be

calculated from these formulae. After estimation, the transition equations show great
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similarity with the error-correction form of classical multiplicative Holt-Winters:

ŷt(h) = (ℓ̂t + hb̂t)ŝt+h−m (3a)

ℓ̂t = ℓ̂t−1 + b̂t−1 + α̂êt/ŝt−m (3b)

b̂t = b̂t−1 + α̂β̂êt/ŝt−m (3c)

ŝt = ŝt−m + γ̂(1 − α̂)êt/ℓ̂t (3d)

The only difference is the denominator on the right-hand side of the updating equation

for the seasonal indices, but since ℓt ≈ ℓt−1 + bt−1, the difference is only minor.

Extending the above to the multivariate case, we identify the following model underlying

the GSI approach:

yi,t = (ℓi,t−1 + bi,t−1)st−m + (ℓi,t−1 + bi,t−1)st−mεi,t (4a)

ℓi,t = ℓi,t−1 + bi,t−1 + αi(ℓi,t−1 + bi,t−1)εi,t (4b)

bi,t = bi,t−1 + αiβi(ℓi,t−1 + bi,t−1)εi,t (4c)

st = st−m + γst−m

N
∑

i=1

wiεi,t (4d)

where i = 1, . . . , N denotes the items in the product group and ℓi,t and bi,t denotes their

level and trend components. All items share a common seasonality, denoted by st. All

items have normally distributed disturbances εi,t. The wi are weights that sum to 1. This

model can be rewritten in error-correction form as

ℓi,t = ℓi,t−1 + bi,t−1 + αiei,t/st−m (5a)

bi,t = bi,t−1 + αiβiei,t/st−m (5b)

st = st−m + γ

N
∑

i=1

wiei,t

ℓi,t−1 + bi,t−1
(5c)

with ei,t = yi,t − (ℓi,t−1 + bi,t−1)st−m. The forecasting method resulting from this model

has the following updating equations:

ℓ̂i,t = αi

yi,t

ŝt−m

+ (1 − αi)(ℓ̂i,t−1 + b̂i,t−1) (6a)

b̂i,t = βi(ℓ̂i,t − ℓ̂i,t−1) + (1 − βi)b̂i,t−1 (6b)
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ŝt = γ
N

∑

i=1

wiyi,t

ℓ̂i,t−1 + b̂i,t−1

+ (1 − γ)ŝt−m (6c)

A h-step ahead forecast for item i, made at time t, is given by ŷi,t(h) = (ℓ̂i,t +hb̂i,t)ŝt+h−m.

To see why this model indeed yields these equations for forecasts and updates of state

variables, first consider the single source of error version of the random walk plus noise

model:

yt = ℓt−1 + εt (7a)

ℓt = ℓt−1 + αεt (7b)

Solving the first equation for εt and substituting in the second one gives

ℓt = αyt + (1 − α)ℓt−1 (8)

which can be further worked out to ℓt = (1−α)tℓ0 +α
∑t−1

j=0(1−α)jyt−j . The consecutive

values of the ℓt are thus determined by a starting value ℓ0 and the observations y1, y2, . . .

. This means that once we have an estimate for ℓ0, namely ℓ̂0, subsequent estimates

ℓ̂1, ℓ̂2, . . . can easily be computed every period as new observations become available. In

other words, an estimate for ℓt can be computed by taking its conditional expectation,

given the choice of the starting value and parameters, and the observations:

ℓ̂t = E(ℓt|ℓ̂0, α, y1, . . . , yt) (9)

Since all necessary quantities are known, no actual expectation has to be taken and ℓ̂t can

simply be computed using recursion (8). In this way, we get minimum mean square error

estimates of the ℓt’s, conditional on ℓ̂0. A minimum mean square error forecast is then

obtained by taking the conditional expectation of (7a), E(yt+h|ℓ̂0, α, y1, . . . , yt) = ℓ̂t.

This idea extends to the model for GSI. The error-correction form in (5a)-(5c) is the equiv-

alent of that for the random walk plus noise model in (8). Again, once starting values

ℓ̂i,0, b̂i,0 and ŝ−m+1, . . . , ŝ0 have been provided, subsequent estimates of ℓi,t, bi,t and st

can be calculated as observations become available. The forecast function is equal to

(ℓ̂i,t + hb̂i,t)ŝt+h−m. The initial states and the smoothing parameters can be estimated by
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for example using a maximum likelihood approach, or by minimizing some other crite-

rion such as MSE.

The method (6a)-(6c) resulting from model (4a)-(4d) is a generalization of the Holt-

Winters procedure (3a)-(3d). The updating equations for level and trend are the same

as those for HW. The updating equation for the seasonal component, however, makes

use of all time series i = 1, . . . , N . It updates the previous estimate ŝt−m by weighting

it with a new estimate
∑N

i=1
wiyi,t

ℓ̂i,t−1+b̂i,t−1

. This new estimate is a weighted average of N

estimates obtained from all time series independently. By pooling these estimates using

weights wi, the forecast accuracy can be improved.

The weights wi can be chosen to minimize forecast errors, measured by for example MSE,

or can be specified in a variety of other ways. For example, taking wi = 1
N

gives equal

weight to all error terms and thus all time series. Taking a simple average means all time

series are considered to have the same amount of noise and thus get the same smoothing

parameter γ 1
N

. If this is not the case, highly variable series may corrupt the estimated

seasonal component. In general, noisier series should thus get lower weights. The lower

the relative noise εi,t, the higher the weight wi should be, and thus also the higher the

smoothing parameter γwi should be.

The variability of a time series can be measured by the variance of relative noise, equal to

V ar(
ei,t

(ℓi,t−1+bi,t−1)st−m
) = V ar(εi,t) = σ2

i . Weights could thus be taken to be wi =
σ−2

i
∑N

j=1
σ−2

j

,

giving higher weights when there is less noise. We will use these latter weights in our

simulations below.

A special case of the model arises when we make the weights time-dependent and

take them equal to the proportion of a time series in the aggregate times series: wi,t =

ℓi,t−1+bi,t−1
∑N

j=1
(ℓj,t−1+bj,t−1)

. This results in the updating equations for level and trend equal to (6a)-

(6b), but seasonal equation (6c) replaced by

ŝt = γ

∑N
i=1 yi,t

∑N
j=1 ℓ̂j,t−1 + b̂j,t−1

+ (1 − γ)ŝt−m (10)

This choice of weights gives equal weight to all time series in a simple summation. In

other words, seasonality is now estimated from aggregate data, while level and trend are

estimated from disaggregate data.
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Since model (4a)-(4d) allows the weights to be chosen in a variety of ways, it general-

izes earlier GSI approaches. Dalhart (1974) computed seasonal indices separately for all

N time series and then averaged them to get a composite estimate. This approach cor-

responds to setting wi = 1
N

. Withycombe (1989) computed the seasonal indices from

aggregate data, where demand was weighted by selling price per item pi. The rationale

for this is that we are more concerned with forecasts errors for higher valued items. This

approach corresponds to setting

wi,t =
pi(ℓi,t−1 + bi,t−1)

∑N
j=1 pj(ℓj,t−1 + bj,t−1)

(11)

giving seasonal updating equation

ŝt = γ

∑N
i=1 piyi,t

∑N
j=1 pj(ℓ̂j,t−1 + b̂j,t−1)

+ (1 − γ)ŝt−m (12)

Problems can arise if the time series that are grouped are not expressed in the same units

of measurement. In practice, the unit of measurement in which a series is recorded is

often arbitrary.For example, demand can be expressed in terms of single items, turnover,

or packing sizes. If some time series are expressed in different units, different weights

wi result and this can determine the quality of the forecasts. One way of avoiding this

problem is to express all time series in the same units. However, this is not always easy

to do.

Another option is to ensure the model and method are unit-free and do not have this

problem. This means that the unit of measurement in which the time series is expressed

does not influence the outcome of the model and method, in particular the seasonal equa-

tions of both the model (4d) and the method (6c). These two equations contain the relative

errors (εi,t) or yi,t/(ℓi,t−1 + bi,t−1) for all series, which are independent of the unit of mea-

surement. The weights wi, however, are not necessarily unit-free, causing the equations

to be dependent on the unit of measurement. For example, wi,t =
ℓi,t−1+bi,t−1

∑N
j=1

(ℓj,t−1+bj,t−1)
or

wi = pi
∑N

j=1
pj

are dependent on the unit of measurement of each of the series. On the

other hand, wi,t =
pi(ℓi,t−1+bi,t−1)

∑N
j=1

pj(ℓj,t−1+bj,t−1)
, wi = 1

N
or wi =

σ−2

i
∑N

j=1
σ−2

j

are unit-free weights.

The latter option is unit-free since it depends on the relative errors, and is therefore used

in the simulations below.
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2.2 Estimation

Before we can make forecasts, we need estimates for initial values ℓi,0, bi,0 and

s−m+1, . . . , s0, and for parameters αi, βi, γ and wi. These can be obtained by maximizing

the conditional likelihood function or by minimizing some criterion that measures fore-

cast errors such as the MSE. In Hyndman et al. (2002) several estimation methods were

compared for fitting exponential smoothing state space models on data from the M3-

competition, and minimizing the MSE was found on average to result in slightly more

accurate forecasts than maximizing the likelihood. Although these ways of obtaining es-

timates may be feasible approaches for simpler models like the model underlying HW,

the GSI model contains many parameters, and thus finding optimal values in such a high

dimensional (m + 1 + 5N dimensions) parameter space may be very time-consuming.

Instead of finding optimal estimates for all parameters and initial states by a nonlinear

optimization algorithm, we can use a two-stage procedure and first obtain initial esti-

mates of the states and then optimize the smoothing parameters. This is a common pro-

cedure for exponential smoothing methods and means that the smoothing parameters

are optimized conditional on the values of the initial states.

A two-step heuristic solution divides the historical data (T periods) into two sections:

an initialization period (I) and an optimization period (O), with T = I + O. Heuristic

estimates for initial states are obtained using sample I , and a nonlinear optimization

algorithm is used to find optimal parameter settings over sample O. There are several

ways in which this can be done. Below, we describe the procedure that is used in the

simulation experiments in the next section.

Classical decomposition by ratio-to-moving-averages (RTMA) is used to obtain estimates

for ℓ0, b0 and s−m+1, . . . , s0. For HW, we apply this procedure to each time series sepa-

rately. For the GSI method, we also need estimates of the wi. In the forecasting method,

we use weights equal to ŵi =
σ̂−2

i
∑N

j=1
σ̂−2

j

. To estimate the σ̂2
i , we fit a single source of error

HW model to each time series separately, by applying the corresponding HW method.

Although this method is not optimal if we assume the data follows the model underlying

GSI, it still gives reasonably good estimates of εi,t. These fitted errors can be calculated

using the smoothed state estimates and the observation equation: ε̂i,t =
yi,t−(ℓ̂i,t−b̂i,t)ŝt−m

(ℓ̂i,t−b̂i,t)ŝt−m

.
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This gives the following estimate for σ2
i :

σ̂2
i =

∑I
t=1 ε̂ 2

i,t

I − 3
=

∑I
t=1

(

yi,t−(ℓ̂i,t−1+b̂i,t−1)ŝt−m

(ℓ̂i,t−1+b̂i,t−1)ŝt−m

)2

I − 3
(13)

We use [I-number of smoothing parameters] in the divisor, as suggested by

Bowerman et al. (2005). Next, since the GSI model assumes the seasonal component is

common to all time series, we use the estimates of wi to find initial estimates of the com-

mon seasonal pattern by computing ŝk =
∑N

i=1 ŵiŝi,k for k = −m + 1, . . . , 0.

After obtaining estimates for the initial states, each forecasting algorithm is run over I

and O, so that the impact of poor initial estimates is offset during period I . The MSE

is then calculated and minimized over period O, by applying a nonlinear optimization

algorithm. The same smoothing parameters are used throughout both I and O, but only

measured over O. The starting values of the smoothing parameters are all taken to be 0.5.

Furthermore, they are constrained to 0 ≤ αi, βi, γ ≤ 1. Since for GSI all time series are

interrelated via the common seasonality equation, the sum of MSE’s is minimized, while

for HW the MSE is optimized for each time series separately.

We normalize the seasonal indices after each update of the estimates, as argued in

Archibald and Koehler (2003). Although the model does not make such an assumption

on the seasonal indices, their interpretation would be lost if they do no longer sum up to

m.

3 Simulation study

We are interested in determining in which situations the GSI method is more accurate

than HW and how the forecast accuracy of both methods depends on parameter settings

and time series characteristics. In this section, we describe a simulation study that in-

vestigates the properties of the GSI method. The reason for carrying out a simulation

study is that obtaining analytical expressions for forecast accuracy and prediction inter-

vals has proven to be difficult. Derivation of exact expressions like those that exist for
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Holt-Winters (Hyndman et al., 2005) becomes mathematically intractable. Approxima-

tions like those in Koehler et al. (2001) assume that the seasonal component is unchang-

ing in the future. Under this assumption, the GSI model yields the same expressions as

for HW.

3.1 Parameter settings and data simulation

The model developed in the previous section allows random simulation of data for which

the GSI method is optimal. However, here we generate data from a slightly modified

model:

yi,t = (ℓi,t−1 + bi,t−1)si,t−mvi,t (14a)

ℓi,t = (ℓi,t−1 + bi,t−1)(1 + αi(vi,t − 1)) (14b)

bi,t = bi,t−1 + (ℓi,t−1 + bi,t−1)αiβi(vi,t − 1) (14c)

st = st−m + γst−m

N
∑

i=1

wi(vi,t − 1) (14d)

si,t = st + di,t (14e)

Firstly, this model replaces 1+εi,t by vi,t. In model (4a)-(4d), the disturbances are assumed

to be normally distributed. Since errors are multiplicative, this could result in negative

time series values . Therefore, we use vi,t ∼ Γ(a, b) with a = 1/b and b = σ2
i , so that vi,t

has mean ab = 1 and variance ab2 = σ2
i . Although this reduces the probability of yi,t

becoming negative or problems due to division by zero, these can still occur if ℓi,t + bi,t ≤

0. If this happens, ℓi,t + bi,t is truncated and set equal to a small number.

Secondly, this model includes possible dissimilarity in seasonal patterns by letting the

seasonal patterns of each of the time series i = 1, . . . , N have a deviation di,t from the

common pattern. If the seasonal patterns are not identical, GSI will no longer be optimal,

and HW may give more accurate forecasts. For di,t = 0, the equations of this model,

when put in error-correction form, show equivalence with the GSI method (and with

HW for N = 1). The deviations di,t are assumed to be deterministic and periodic, i.e.

di,t+m = di,t. In this way, the extent of dissimilarity remains the same over time and

is not affected by the noise processes. In this simulation study we determine how the

magnitude of di,t affects the performance of GSI relative to that of HW. Although the di,t
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are deterministic, we assume they are initially drawn from a normal distribution. If we

draw the di,t from a normal distribution with mean zero and standard deviation σd, then

about 95% of seasonal indices si,t should be in the interval (st − 2σd, st + 2σd). The value

of σd thus determines a bandwidth within which the seasonal indices of all series in the

group lie.

In the simulations, data processes and types of forecasts are varied. Below, we discuss

some of the corresponding model and forecast parameter settings. All parameter settings

are summarized in Tables 1 and 2. Many parameters are only scale parameters and thus

their actual settings are not important. Their values relative to that of others are relevant.

More precisely, the results are determined by the amount of noise relative to the under-

lying pattern. This determines the quality of the estimates and thus of the forecasts. For

example, the value of the level ℓi,t of a time series is not relevant on its own, but the ratio

between εi,t and ℓi,t is. The same applies for the settings of other parameters and will be

discussed below.

This allows for a reduction in the number of parameters to be considered, resulting in

1600 remaining combinations of parameter settings that are examined. Some parameters

are varied systematically on a grid of values. Other parameters are varied randomly

on a continuous interval (parameters are randomly drawn from this interval). For some

parameters that are varied randomly, the interval from which they are drawn is varied

systematically.

Table 1: Parameters that remain fixed

Parameter Description Level

m Number of seasons 12
ℓ1,0 Initial level of first item 100
cmax Maximum initial trend 0.008
s{−m+1,...,0} Initial seasonal pattern Sinusoid
A Amplitude of seasonal pattern 0.2
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Table 2: Levels at which parameters are varied

Parameter Description Level

Time series

T Length of historical data 4m, 6m
rmax 1, 4
ri Ratio between ℓi,0 and ℓ1,0 ∈ [1, rmax]
ci Ratio between bi,0 and ℓi,0 ∈ [−cmax, cmax]
αi ∈ [0, 1]
βi ∈ [0, 1]
γ ∈ [0, 1]
wi Weights ∈ [0, 1]
σ2

i Variance of noise ∈ [0, σ2
max]

σmax 0.01, 0.03, 0.05, 0.07

Product groups

N Number of items in group 2, 4, 8, 16, 32
σd Dissimilarity in 0, 0.01, 0.03, 0.05, 0.07

seasonal patterns

Forecasting

h Forecast horizon 1, 4, 8, 12

Level and trend

In order to generate simulated data, seed values ℓi,0, bi,0 and s0, . . . , s−m+1 are specified,

after which data from the model is generated for t = 1, . . . , T . The starting values of the

time series are normalized by setting the level of the first time series equal to ℓi=1,t=0 =

100. The levels of the other series are set by specifying the ratio between the initial level

ℓi,0 of item i and that of the first item: ri =
ℓi,0

ℓ1,0
. The ri are randomly drawn from [1, rmax]

and used to set ℓi,0 = riℓ1,0. The ratios are used for initial values when generating data.

However, the levels evolve according to random walk processes, as well as due to trends.

Especially under large amounts of noise or if trends move in opposite directions, the

actual ratios may thus deviate from the ri. For the regression analyses later on, we will

therefore use an average ratio: r′i = (ri +
ℓi,T

ℓ1,T
)/2. Besides, to avoid using all the ri’s in a

regression, we will summarize the group by regressing on µr and σ2
r , which characterize

the mean of r′i and its variation among the group of items.

The initial growth rate bi,0 is set by randomly drawing ci ∈ [−cmax, cmax] and setting

bi,0 = ciℓi,0, so that we end up with an initial trend between −cmax ·m·100 and cmax ·m·100
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annually. Taking cmax = 0.008, m = 12 and ℓi,0 = 100, this gives an initial trend between

approximately −10 and +10. Only one value of cmax is considered since the performance

of GSI does not depend on the trend, but on the amount of noise to which the trend is

subject. Since the trend development is incorporated in the level, the trends are not used

in the regression. The parameters αi and βi are drawn randomly from (0, 1). Once they

are drawn, they are summarized for regression purposes by computing the proportion of

each parameters in the intervals (0, 0.33), (0.33, 0.67) or (0.67, 1), denoted by α0.33
0 , α0.67

0.33,

α1.00
0.67, β0.33

0 , β0.67
0.33 and β1.00

0.67 . Both the former three and the latter three thus sum to 1.

Seasonal patterns

We consider a single and fixed initial seasonal pattern {ŝ−m+1, . . . , ŝ0}, with sj−m = 1 +

A · sin(2πj/m) for j = 1, . . . ,m and with A = 0.2. The smoothing parameter γ is drawn

randomly from (0, 1). The dissimilarity in seasonal patterns is modeled via parameters

di,t, which are drawn from N(0, σ2
d). Thus, σ2

d determines the bandwidth within which

all seasonal patterns of the group lie and therefore the extent of dissimilarity. If σ2
d = 0

the seasonal patterns are identical.

Weights

For data that are simulated, w′
i are drawn randomly from [0, 1] and then normalized by

taking wi =
w′

i
∑N

i=1
w′

i

, so that
∑N

i=1 wi = 1. In the GSI method, weights wi are chosen to be

fixed and equal to
σ−2

i
∑N

j=1
σ−2

j

.

Noise

We choose noise variances (σ2
i ) on the interval [0, σ2

max]. The noisiness of series is de-

termined by the noise process in combination with parameters α, β and γ. These deter-

mine the signal-to-noise ratios for the level, trend and seasonals. The value of σi above

gives information on the volatility of the time series under perfect information about the

trend-seasonal cycle, but σi in combination with parameters α, β and γ determines the

total variation in the series.
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3.2 Accuracy measurement

The two-step heuristic solution from the previous section now divides the historical data

(T periods) into three sections instead of two: an initialization period (I), an optimiza-

tion period (O), and a hold-out sample (H), with T = I + O + H . Heuristic estimates

for initial states are obtained using sample I , and a nonlinear optimization algorithm is

used to find optimal parameter settings over sample O. We use 2m periods for obtaining

initial estimates, and 1m and 3m (for T = 4m and T = 6m respectively) periods for esti-

mating the smoothing parameters. After optimization, the algorithm is run over the last

m periods and accuracy measures are calculated.

For each combination of parameter settings, multiple replications are carried out. We

continue making replications until we have found an approximate 95% confidence inter-

val for our accuracy measure. Then, our estimate of the accuracy measure has a relative

error of at most 0.1 with a probability of approximately 0.95. In 99% of the cases, less

than 200 replications were needed.

From a computational perspective, we want a measure that is insensitive to outliers, neg-

ative or (close to) zero values. For these reasons, many measures of accuracy for univari-

ate forecasts are inadequate, since they may be infinite, skewed or undefined, and can

produce misleading results (Makridakis and Hibon, 1995; Hyndman and Koehler, 2006).

Even the most common measures have drawbacks.

Based on these considerations, we opt for the use of the following accuracy measure.

Assume that historical data is available for periods t = 1, . . . , T , and that forecasts are

made for t = T + j, j = 1, . . . ,H , with H the length of the hold-out sample. Based on

an evaluation of all common types of accuracy measures, Hyndman and Koehler (2006)

advocates the use of scaled errors, where the error is scaled based on the in-sample MAD

from a benchmark method. If we take the Naı̈ve method (see e.g., Makridakis et al., 1998)

as a benchmark, the scaled error is defined as

qi,t =
yi,t − ŷi,t

1
T−1

∑T
t=2 |yi,t − yi,t−1|

(15)

with yi,t the time series value and ŷi,t its forecast. The Mean Absolute Scaled Error is then

simply the mean of |qi,t|. In our case we take the mean over the hold-out sample and over
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all time series:

MASE =
1

N

N
∑

i=1

1

H

T+H
∑

t=T+1

|qi,t| =
1

N

N
∑

i=1

MADi

MADb,i

(16)

with MADi the out-of-sample MAD of time series i and MADb,i the in-sample MAD

of the benchmark method for time series i. Hyndman and Koehler (2006) recommends

using the MASE for comparing accuracy across multiple time series, since it resolves all

arithmetic issues mentioned above and is thus suitable for all situations.

4 Results

We compare results on the relative accuracy of GSI compared to HW:

MASEGSI
HW =

MASEGSI

MASEHW
(17)

We first determine which of the parameters have the strongest impact on the accuracy

improvement. We do this by using the analysis of variance procedure (ANOVA). This

analysis tells us if distinct levels of each of the parameters result in significantly different

values of the accuracy improvement. For example, if at different values of N the values

of MASEGSI
HW are significantly different, the accuracy improvement depends on the values

of N significantly.

The analysis of variance procedure allows us to see which parameters explain the vari-

ation in results most in a clear way, and get a good estimate of interaction effects. An

interaction effect is the extra effect due to combining explanatory variables that cannot

be predicted by knowing the the effects of the variables separately. Significant interac-

tion effects indicate that a combination of explanatory variables is particularly effective.

Based on the results in the previous section, there seem to be several interaction effects.

For our simulation this means that simply optimizing each parameter separately does

not necessarily lead to the combination of parameter settings with the lowest value of

MASEGSI
HW.

Table 3 presents the results for an ANOVA of the simulation results. It includes the input

parameters for the simulation (N , T , rmax, h, σd and σmax), as well as the parameters that

describe the group of time series in more detail (µr, σ2
r , α0.33

0 , α0.67
0.33, α1.00

0.67, β0.33
0 , β0.67

0.33 , β1.00
0.67
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Table 3: ANOVA for simulation results

Source of variation SS1 df 2 MSS3 F P
N 64819 1 64819 170260.0 < 0.0001
T 51803 1 51803 136070.0 < 0.0001
rmax 583 1 583 1530.4 < 0.0001
σd 5167 1 5167 13572.0 < 0.0001
σmax 1161 1 1161 3049.6 < 0.0001
h 94 1 94 247.0 < 0.0001
µr 0.21 1 0.21 0.5 0.46
σ2

r 0.12 1 0.12 0.3 0.58
α0.33

0
519 1 519 1364.0 < 0.0001

α0.67
0.33 635 1 635 1668.8 < 0.0001

α1.00
0.67

1703 1 1703 4474.2 < 0.0001
β0.33

0
51 1 51 134.5 < 0.0001

β0.67
0.33 34 1 34 88.5 < 0.0001

γ 0.13 1 0.13 0.3 0.56
I(N, T )∗ 62 1 62 164.0 < 0.0001
I(N, σd) 204 1 204 536.7 < 0.0001
I(T, σd) 139 1 139 364.5 < 0.0001
I(h, σd) 209 1 209 549.4 < 0.0001
I(σd, σmax) 61 1 61 161.2 < 0.0001
I(N, σmax) 362 1 362 951.3 < 0.0001
I(T, σmax) 213 1 213 560.1 < 0.0001
Residuals 29838 78379 0.38

Total 157658 78400
1 SS : sum of squares
2 df : degrees of freedom
3 MSS : mean sum of squares
∗ I(a, b) : interaction effect between a and b

and γ ). The latter were calculated from the set of time series that were simulated using

the input parameters. In addition, we included the most important interaction effects, i.e.

those interaction effects that were both significant and were larger than 50.

Firstly, it appears that N and T show large values of their respective sum of squares (SS).

This is not surprising, since they take on larger values than the other parameters. If we

take into account the relative magnitudes of the parameters, in particular the SS values

of σd and σmax are large. This corresponds to the findings in the previous section, where

these parameters were found to be important determinants of accuracy improvement.

The SS value of h on the other hand is relatively small, indicating that benefits of GSI do

not apply to only a particular forecast horizon.

In Table 3, the parameter β1.00
0.67 is omitted. The reason is that at least one of the variables
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α0.33
0 , α0.67

0.33, α1.00
0.67, β0.33

0 , β0.67
0.33 or β1.00

0.67 has to be removed from the analysis to avoid singu-

larities (since both α0.33
0 + α0.67

0.33 + α1.00
0.67 = 1 and β0.33

0 + β0.67
0.33 + β1.00

0.67 = 1 and this ANOVA

has no intercept). The values of β0.33
0 , β0.67

0.33 or β1.00
0.67 are much lower than those of α0.33

0 ,

α0.67
0.33 and α1.00

0.67, but would be comparable if for example α1.00
0.67 was omitted instead of

β1.00
0.67 . In either case, it appears that if a group has a larger portion of time series with high

αi’s or βi’s, the accuracy improvement show more variability. Since also rmax has a high

SS value, this shows that groups of time series with more heterogeneous demand pat-

terns show more variation in accuracy improvement. This is not surprising, since more

in those cases, the time series are more variable, and thus more difficult to forecast.

For most of the parameters the effects on the results are clearly significant, with very large

F-values. However, three parameters do not have a significant effect on the accuracy

improvement: µr, σ2
r and γ. In contrast with the values of the αi’s or βi’s, the value of γ

appears to have no clear influence on the accuracy improvement.

Next, we consider the interaction effects. Especially the values of σd and σmax in com-

bination with several other parameters can yield an additional accuracy improvement.

Especially combination including the input parameters N , T and h appear to explain a

significant part of the variation in MASEGSI
HW.

Now we know which parameters explain most of the variance in the accuracy improve-

ment, let us be more precise about the impact of certain parameters. To investigate the re-

lation between accuracy and parameter settings, we fit a multiple linear regression model

by least squares. After examining several regression models, and restricting ourselves to

linear models, the following model without intercept appears to give a good fit:

MASEGSI
HW = θ1N + θ2T + θ3rmax + θ4h + θ5σd + θ6σmax

+ θ7α
0.33
0 + θ8α

0.67
0.33 + θ9α

1.00
0.67

+ θ10β
0.33
0 + θ11β

0.67
0.33 + ξi (18)

Table 4 contains the results for this regression. In this regression, we have left out the

parameters found insignificant in the analysis of variance, as well as the interaction ef-

fects. All parameters have very large t-values and are clearly significant, in particular σd

and σmax. The estimates of the regression coefficients are in line with the results in the
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previous section and indicate that larger accuracy improvements of GSI over HW can be

achieved in case of:

• more similarity in seasonal patterns (smaller values of σd)

• larger amounts of noise (larger σmax)

• larger groups (larger N )

• longer forecast horizons (larger h)

• less historical data (smaller T )

• more homogeneous groups (smaller rmax)

As noted above, one parameter is omitted from the regression. If we leave out α1.00
0.67, the

parameter estimates of β0.33
0 , β0.67

0.33 and β1.00
0.67 are 1.10, 1.03 and 0.92, respectively. If we

leave out β1.00
0.67 , the estimates of α0.33

0 , α0.67
0.33 and α1.00

0.67 are 1.15, 1.05 and 0.92, respectively

(see Table 4). The values of β0.33
0 , β0.67

0.33 in the regression are thus relative to the value of

β1.00
0.67 . In both cases this shows that GSI especially benefits from a group of time series

where a large portion of the series have low values for αi and βi, i.e. slowly evolving

series. In combination with the result that a low value of rmax results in a lower MASEGSI
HW,

this supports literature that hierarchical approaches are more suitable for homogeneous

groups.

Table 4: Results for regression of MASEGSI
HW on parameters (eq. 18)

Variable Coefficient t P
N -0.0024 -11.6 < 0.0001
T 0.0037 19.9 < 0.0001
rmax 0.0183 12.2 < 0.0001
σd 8.6863 98.9 < 0.0001
σmax -7.5374 -75.0 < 0.0001
h -0.0192 -35.4 < 0.0001
α0.33

0
1.1515 67.7 < 0.0001

α0.67
0.33

1.0467 61.0 < 0.0001
α1.00

0.67 0.9175 54.0 < 0.0001
β0.33

0
0.1802 14.5 < 0.0001

β0.67
0.33 0.1141 9.2 < 0.0001

R2 = 0.81
F -statistic = 29010, P -value = < 0.0001

We now look at some results in more detail. Table 5 presents results for the difference in

the seasonal patterns and the amount of noise present in the group in more detail. The

results are broken down with respect to the number of series in a group and averaged
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Table 5: Relative accuracy of GSI compared to HW at various levels of N , σd and σmax

σmax

N σd 0.01 0.03 0.05 0.07

2 0 0.99 0.99 0.91 0.99

2 0.01 1.33 1.18 1.10 1.04
2 0.03 1.46 1.31 1.26 1.13
2 0.05 1.47 1.35 1.28 1.18
2 0.07 1.44 1.35 1.33 1.33
4 0 0.94 0.94 0.89 0.88

4 0.01 1.43 1.21 1.10 1.00
4 0.03 1.61 1.38 1.29 1.22
4 0.05 1.65 1.41 1.38 1.27
4 0.07 1.62 1.52 1.38 1.36
8 0 0.89 0.83 0.84 0.78

8 0.01 1.48 1.11 0.99 0.89

8 0.03 1.69 1.42 1.29 1.13
8 0.05 1.79 1.51 1.31 1.29
8 0.07 1.78 1.61 1.45 1.32
16 0 0.86 0.74 0.67 0.68

16 0.01 1.47 1.06 0.86 0.77

16 0.03 1.78 1.48 1.20 1.02
16 0.05 1.83 1.50 1.31 1.18
16 0.07 1.88 1.59 1.40 1.16
32 0 0.82 0.64 0.61 0.52

32 0.01 1.54 1.02 0.82 0.69

32 0.03 1.82 1.32 1.06 0.91

32 0.05 1.90 1.56 1.24 1.01
32 0.07 1.93 1.60 1.35 1.19

over all other parameters. The cases where MASEGSI
HW < 1 are indicated by bold-faced

numbers. The results show that as the amount of noise increases, the accuracy of GSI

relative to that of HW increases. Furthermore, the seasonal patterns need not be identical

for GSI to improve on HW. If there is enough noise they can be nonidentical to some ex-

tent. However, as the dissimilarity increases, the improvement diminishes. If the patterns

become too dissimilar, HW performs better in all cases.

Besides this, we see that the average improvement increases as the product groups get

larger. If the number of time series increases, the same amount of noise and dissimilarity

gives larger improvements. The results for small groups are less pronounced since the

results show more variability. With small groups there is a larger chance of substantial
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differences in accuracy of both methods. For larger groups, the accuracy is averaged

over more time series and thus more stable. From Table 5, it appears that in case of small

product groups and little noise, it is more likely that HW applied to each series separately

results in better forecasts, while for large product groups and substantial amounts of

noise, GSI is more likely to perform better.

The level of σd (the difference in the seasonal patterns) relative to that of σmax (the maxi-

mum amount of noise in the group) has a significant impact on the results. In Figure 1 the

results for log(σd/σmax) are plotted, which shows a clear relationship between MASEGSI
HW

and the value of σd/σmax. The lower the value of σd/σmax, the larger the accuracy im-

provement, in particular for larger values of N .

log(σd/σmax)
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Figure 1: MASEGSI
HW as a function of log(σd/σmax)

Since GSI can improve on HW even if the seasonal patterns are not identical, the method

is robust to deviations from one of its major assumptions. GSI can also be considered to

be more robust than HW if it is less sensitive to outliers. In Table 6, the mean and stan-

dard deviation of MASE for both GSI and HW are shown, calculated over all parameter

values. As the amount of noise increases, the chance of outliers occurring also increases.

Especially for HW, for larger amounts of noise, the mean and standard deviation go up

significantly. GSI is thus more robust than HW since the accuracy measures are lower

and show less variation.
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Table 6: Robustness results for GSI and HW

MASE
Method σmax Mean St.dev.

GSI 0.01 1.00 0.62
0.03 1.35 0.90
0.05 1.60 1.12
0.07 1.80 1.29

HW 0.01 2.49 55.14
0.03 16.11 154.89
0.05 25.91 192.83
0.07 37.43 226.54

5 Conclusions

This paper presents an approach to making more accurate demand forecasts by using

data from related items. Forecast accuracy at the item level can be improved by simul-

taneously forecasting a group of items sharing a common seasonal pattern. In practice,

we would need to find such a group of products, but here we can make use of the hierar-

chical nature of data within companies. The GSI method and model are generalizations

of the Holt-Winters method and its underlying model. An advantage over Holt-Winters

is that less historical data is needed to obtain good estimates. Instead of using e.g., a

ratio-to-moving-average procedure on several years of data, we now only need one year,

taken across several series, to obtain estimates.

A contribution of this article is that it has not only generalized the Holt-Winters

method, but also earlier group seasonality methods. The methods in Dalhart (1974) and

Withycombe (1989) used aggregation to improve forecast accuracy. We have generalized

this to a system with weights, where the former methods are now special cases. Further-

more, instead of empirical comparisons, we have presented a theoretical framework for

group seasonality approaches.

In the simulation study, we determined the forecast accuracy of each method for a large

number of parameter settings. The main results are that GSI performs better than HW

if there is more similarity in seasonal patterns, for larger amounts of noise, for larger

and more homogeneous groups, for longer forecast horizons, and with less historical

data. There is a clear relationship between the similarity in seasonal patterns and the
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random variation. Furthermore, it appears that seasonal patterns need not be identical

for GSI to give more accurate forecasts than Holt-Winters. If there is substantial random

variation compared to the variation among the patterns, Holt-Winters performs poorly,

and it becomes beneficial to apply GSI, even if seasonal patterns are somewhat different.

This also improves the practical applicability, since in practice it is not very likely that

a group of products exhibits exactly the same seasonal behavior, or at least it will be

impossible to get an accurate estimate of this.

With these simulation results, we can check, for a given group of items, whether we can

expect to obtain a more accurate forecast by GSI than by HW, and indicate how large the

forecast error of both methods will be. Based on this, items can be grouped in order to

generate more accurate forecasts by the GSI method.
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