Time Series in R: Forecasting and Visualisation

Forecast evaluation

29 May 2017
Outline

1. Forecasting residuals
2. Evaluating forecast accuracy
3. Forecasting benchmark methods
4. Lab session 7
5. Time series cross-validation
6. Lab session 8
Fitted values

\[\hat{y}_t |_{t-1} \] is the forecast of \(y_t \) based on observations \(y_1, \ldots, y_t \).

We call these “fitted values”.

Often not true forecasts since parameters are estimated on all data.
Residuals in forecasting: difference between observed value and its fitted value: $e_t = y_t - \hat{y}_{t|t-1}$.

Assumptions

1. $\{e_t\}$ uncorrelated. If they aren’t, then information left in residuals that should be used in computing forecasts.
2. $\{e_t\}$ have mean zero. If they don’t, then forecasts are biased.

Useful properties (for prediction intervals)

3. $\{e_t\}$ have constant variance.
4. $\{e_t\}$ are normally distributed.
Residuals in forecasting: difference between observed value and its fitted value: \(e_t = y_t - \hat{y}_{t|t-1} \).

Assumptions

1. \(\{e_t\} \) uncorrelated. If they aren’t, then information left in residuals that should be used in computing forecasts.
2. \(\{e_t\} \) have mean zero. If they don’t, then forecasts are biased.
Forecasting residuals

Residuals in forecasting: difference between observed value and its fitted value: $e_t = y_t - \hat{y}_{t|t-1}$.

Assumptions

1. $\{e_t\}$ uncorrelated. If they aren’t, then information left in residuals that should be used in computing forecasts.
2. $\{e_t\}$ have mean zero. If they don’t, then forecasts are biased.

Useful properties (for prediction intervals)

3. $\{e_t\}$ have constant variance.
4. $\{e_t\}$ are normally distributed.
checkresiduals() function

livestock %>% auto.arima %>% checkresiduals(test=FALSE)
checkresiduals() function

livestock %>% auto.arima %>% checkresiduals(plot=FALSE)

##
Ljung-Box test
##
data: Residuals from ARIMA(0,1,0) with drift
Q* = 8.6, df = 9, p-value = 0.5
##
Model df: 1. Total lags used: 10
checkresiduals() function

auscafe %>% ets %>% checkresiduals(test=FALSE)
checkresiduals() function

```r
auscafe %>% ets %>% checkresiduals(plot=FALSE)
```

```r
##
## Ljung-Box test
##
## data: Residuals from ETS(M,A,M)
## Q* = 64, df = 8, p-value = 7e-11
##
## Model df: 16. Total lags used: 24
```
Residuals and forecasting

- Autocorrelations left in residuals suggest the forecast method can be improved (in theory).
- Small autocorrelations have little effect, even if significant.
- Non-Gaussian residuals can be handled using bootstrapped forecast intervals:

```r
forecast(..., bootstrap=TRUE)
```
Bootstrapped forecast intervals

```
1990 2000 2010 2020
Time
.
level
80
95
Forecasts from ETS(M,A,M)
```

```r
auscafe %>% ets %>% forecast %>% autoplot
```
Bootstrapped forecast intervals

```r
auscafe %>% ets %>% forecast(bootstrap=TRUE) %>% autoplot
```

Forecasts from ETS(M,A,M)
Outline

1. Forecasting residuals
2. Evaluating forecast accuracy
3. Forecasting benchmark methods
4. Lab session 7
5. Time series cross-validation
6. Lab session 8
A model which fits the training data well will not necessarily forecast well.

A perfect fit can always be obtained by using a model with enough parameters.

Over-fitting a model to data is just as bad as failing to identify a systematic pattern in the data.

The test set must not be used for any aspect of model development or calculation of forecasts.
Forecast errors

Forecast “error”: the difference between an observed value and its forecast.

\[e_{T+h} = y_{T+h} - \hat{y}_{T+h|T}, \]

where the training data is given by \(\{y_1, \ldots, y_T\} \)

- Unlike residuals, forecast errors on the test set involve multi-step forecasts.
- These are true forecast errors as the test data is not used in computing \(\hat{y}_{T+h|T} \).
Measures of forecast accuracy

```
training <- window(auscafe, end=c(2013,12))
test <- window(auscafe, start=c(2014,1))
training %>% ets %>% forecast(h=length(test)) -> fc
autoplot(fc) + autolayer(test)
```
Measures of forecast accuracy

Let $\hat{y}_{t+h|t}$ denote the forecast of y_{t+h} using data up to time t.

Training set measures:

$$\text{MAE} = \frac{1}{T} \sum_{t=1}^{T} |y_t - \hat{y}_{t|t-1}|$$

$$\text{MSE} = \frac{1}{T} \sum_{t=1}^{T} (y_t - \hat{y}_{t|t-1})^2$$

$$\text{RMSE} = \sqrt{\frac{1}{T} \sum_{t=1}^{T} (y_t - \hat{y}_{t|t-1})^2}$$

$$\text{MAPE} = \frac{100}{T} \sum_{t=1}^{T} \frac{|y_t - \hat{y}_{t|t-1}|}{|y_t|}$$

MAE, MSE, RMSE are all scale dependent. MAPE is scale independent but is only sensible if $y_t \gg 0$ for all t, and y has a natural zero.
Measures of forecast accuracy

Let $\hat{y}_{t+h|t}$ denote the forecast of y_{t+h} using data up to time t.

Training set measures:

MAE = $\frac{1}{T} \sum_{t=1}^{T} |y_t - \hat{y}_{t|t-1}|$

MSE = $\frac{1}{T} \sum_{t=1}^{T} (y_t - \hat{y}_{t|t-1})^2$

$\text{RMSE} = \sqrt{\frac{1}{T} \sum_{t=1}^{T} (y_t - \hat{y}_{t|t-1})^2}$

MAPE = $\frac{100}{T} \sum_{t=1}^{T} \frac{|y_t - \hat{y}_{t|t-1}|}{|y_t|}$

- MAE, MSE, RMSE are all scale dependent.
- MAPE is scale independent but is only sensible if $y_t \gg 0$ for all t, and y has a natural zero.
Measures of forecast accuracy

Let $\hat{y}_{t+h|t}$ denote the forecast of y_{t+h} using data up to time t.

Test set measures:

- **MAE**
 \[
 \text{MAE} = \frac{1}{H} \sum_{h=1}^{H} |y_{T+h} - \hat{y}_{T+h|T}|
 \]

- **MSE**
 \[
 \text{MSE} = \frac{1}{H} \sum_{h=1}^{H} (y_{T+h} - \hat{y}_{T+h|T})^2
 \]

- **RMSE**
 \[
 \text{RMSE} = \sqrt{\frac{1}{H} \sum_{h=1}^{H} (y_{T+h} - \hat{y}_{T+h|T})^2}
 \]

- **MAPE**
 \[
 \text{MAPE} = \frac{100}{H} \sum_{h=1}^{H} \frac{|y_{T+h} - \hat{y}_{T+h|T}|}{|y_t|}
 \]

- **MAE, MSE, RMSE** are all scale dependent.
- **MAPE** is scale independent but is only sensible if $y_t \gg 0$ for all t, and y has a natural zero.
Measures of forecast accuracy

Mean Absolute Scaled Error

\[
MASE = \frac{1}{H} \sum_{h=1}^{H} |y_{T+h} - \hat{y}_{T+h}|_T / Q
\]

where \(Q \) is a stable measure of the scale of the time series \(\{y_t\} \).

Proposed by Hyndman and Koehler (IJF, 2006).

For non-seasonal time series,

\[
Q = \frac{1}{T-1} \sum_{t=2}^{T} |y_t - y_{t-1}|
\]

works well. Then MASE is equivalent to MAE relative to a naïve method.
Measures of forecast accuracy

Mean Absolute Scaled Error

\[
MASE = \frac{1}{H} \sum_{h=1}^{H} \left| y_{T+h} - \hat{y}_{T+h|T} \right| / Q
\]

where \(Q \) is a stable measure of the scale of the time series \(\{y_t\} \).

Proposed by Hyndman and Koehler (IJF, 2006).

For seasonal time series,

\[
Q = \frac{1}{T-m} \sum_{t=m+1}^{T} \left| y_t - y_{t-m} \right|
\]

works well. Then MASE is equivalent to MAE relative to a seasonal naïve method.
Measures of forecast accuracy

```r
training <- window(auscafe, end=c(2013,12))
test <- window(auscafe, start=c(2014,1))
training %>% ets %>% forecast(h=length(test)) -> fc
accuracy(fc, test)
```

```
## ME   RMSE  MAE  MPE
## Training set 0.001482 0.03816 0.02761 0.09342
## Test set -0.121597 0.15318 0.13016 -3.51895
## MAPE   MASE   ACF1 Theil's U
## Training set 2.056 0.2881 0.2006 NA
## Test set 3.780 1.3583 0.6323 0.7647
```
Poll: true or false?

1. Good forecast methods should have normally distributed residuals.
2. A model with small residuals will give good forecasts.
3. The best measure of forecast accuracy is MAPE.
4. If your model doesn’t forecast well, you should make it more complicated.
5. Always choose the model with the best forecast accuracy as measured on the test set.
1. Forecasting residuals
2. Evaluating forecast accuracy
3. Forecasting benchmark methods
4. Lab session 7
5. Time series cross-validation
6. Lab session 8
Forecasting benchmark methods

Average method
- Forecasts equal to mean of historical data.

Naïve method
- Forecasts equal to last observed value.
- Consequence of efficient market hypothesis.

Seasonal naïve method
- Forecasts equal to last value from same season.

Drift method
- Forecasts equal to last value plus average change.
- Equivalent to extrapolating a line drawn between first and last observations.
Forecasting benchmark methods

- Mean: `meanf(y, h=20)`
- Naïve: `naive(y, h=20)`
- Seasonal naïve: `snaive(y, h=20)`
- Drift: `rfw(y, drift=TRUE, h=20)`

Check that your method does better than these standard benchmark methods.
Forecasting benchmark methods

livestock %>% rwf(drift=TRUE) %>% autoplot
Forecasting benchmark methods

```r
auscafe %>% snaive %>% autoplot
```

Forecasts from Seasonal naive method

- Level 80
- Level 95
Forecasting benchmark methods

```r
training %>% ets %>% forecast(h=length(test)) -> fc_ets
training %>% snaive(h=length(test)) -> fc_snaive
accuracy(fc_ets, test)

<table>
<thead>
<tr>
<th></th>
<th>ME</th>
<th>RMSE</th>
<th>MAE</th>
<th>MPE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Training</td>
<td>0.001482</td>
<td>0.03816</td>
<td>0.02761</td>
<td>0.09342</td>
</tr>
<tr>
<td>Test</td>
<td>-0.121597</td>
<td>0.15318</td>
<td>0.13016</td>
<td>-3.51895</td>
</tr>
</tbody>
</table>

MAPE MASE ACF1 Theil's U

<table>
<thead>
<tr>
<th></th>
<th>MAPE</th>
<th>MASE</th>
<th>ACF1</th>
<th>Theil's U</th>
</tr>
</thead>
<tbody>
<tr>
<td>Training</td>
<td>2.056</td>
<td>0.2881</td>
<td>0.2006</td>
<td>NA</td>
</tr>
<tr>
<td>Test</td>
<td>3.780</td>
<td>1.3583</td>
<td>0.6323</td>
<td>0.7647</td>
</tr>
</tbody>
</table>

accuracy(fc_snaive, test)

<table>
<thead>
<tr>
<th></th>
<th>ME</th>
<th>RMSE</th>
<th>MAE</th>
<th>MPE</th>
<th>MAPE</th>
<th>MASE</th>
<th>ACF1</th>
<th>Theil's U</th>
</tr>
</thead>
<tbody>
<tr>
<td>Training</td>
<td>0.08569</td>
<td>0.1226</td>
<td>0.09583</td>
<td>6.529</td>
<td>7.286</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test</td>
<td>0.41363</td>
<td>0.4344</td>
<td>0.41363</td>
<td>12.183</td>
<td>12.183</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

MASE ACF1 Theil's U

<table>
<thead>
<tr>
<th></th>
<th>MASE</th>
<th>ACF1</th>
<th>Theil's U</th>
</tr>
</thead>
<tbody>
<tr>
<td>Training</td>
<td>1.000</td>
<td>0.8425</td>
<td>NA</td>
</tr>
<tr>
<td>Test</td>
<td>4.317</td>
<td>0.6438</td>
<td>2.165</td>
</tr>
</tbody>
</table>
```
Outline

1. Forecasting residuals
2. Evaluating forecast accuracy
3. Forecasting benchmark methods
4. Lab session 7
5. Time series cross-validation
6. Lab session 8
Lab Session 7
Outline

1. Forecasting residuals
2. Evaluating forecast accuracy
3. Forecasting benchmark methods
4. Lab session 7
5. Time series cross-validation
6. Lab session 8
Time series cross-validation

Traditional evaluation

![Diagram showing training data and test data over time](image-url)
Time series cross-validation

Traditional evaluation

Time series cross-validation
Forecast accuracy averaged over test sets.

Also known as “evaluation on a rolling forecasting origin”
Forecast accuracy averaged over test sets.

Also known as “evaluation on a rolling forecasting origin”
Forecast accuracy averaged over test sets.
Also known as “evaluation on a rolling forecasting origin”
Time series cross-validation

$h = 4$

- Forecast accuracy averaged over test sets.
- Also known as “evaluation on a rolling forecasting origin”
Time series cross-validation

$h = 5$

- Forecast accuracy averaged over test sets.
- Also known as “evaluation on a rolling forecasting origin”
tsCV function:

```r
# Example usage of tsCV function

e <- tsCV(ts, forecastfunction, h=1, ...)
e1 <- tsCV(auscafe, stlf,
            etsmodel="AAN", damped=FALSE, lambda=0)
autoplot(e1)

sqrt(mean((e1/auscafe)^2, na.rm=TRUE))
```

```r
## [1] 0.0259
```
tsCV function:

For ets and auto.arima, you need to write a single forecasting function:

```r
fets <- function(x, h, model="ZZZ", damped=NULL, ...) {
  forecast(ets(x, model=model, damped=damped), h=h)
}
```

e2 <- tsCV(auscafe, fets, model="MAM", damped=FALSE)
autoplot(e2)

```
sqrt(mean((e2/auscafe)^2, na.rm=TRUE))
```

[1] 0.03301
Comparison should be over the same observations:

```r
pe1 <- window(100*e1/auscafe, start=1985)
pe2 <- window(100*e2/auscafe, start=1985)
sqrt(mean(pe1^2, na.rm=TRUE))
## [1] 2.571
```

```r
sqrt(mean(pe2^2, na.rm=TRUE))
## [1] 2.733
```
A good way to choose the best forecasting model is to find the model with the smallest RMSE computed using time series cross-validation.

Minimizing AICc is asymptotically equivalent to minimizing $tscv$ with $h = 1$.
Outline

1. Forecasting residuals
2. Evaluating forecast accuracy
3. Forecasting benchmark methods
4. Lab session 7
5. Time series cross-validation
6. Lab session 8