3.1 Time series cross-validation
1 Time series cross-validation

2 Lab session 13
Cross-validation

Traditional evaluation

Leave-one-out cross-validation
Cross-validation

Time series cross-validation

\[h = 1 \]
Cross-validation

Time series cross-validation

\[h = 2 \]
Cross-validation

Time series cross-validation

$h = 3$
Cross-validation

Time series cross-validation

$h = 4$
Cross-validation

Time series cross-validation

\[h = 5 \]
Cross-validation

Time series cross-validation

\[h = 6 \]
Cross-validation

Time series cross-validation

Also known as “Evaluation on a rolling forecast origin”
Some connections

Cross-sectional data

- Minimizing the AIC is asymptotically equivalent to minimizing MSE via leave-one-out cross-validation. (Stone, 1977).

Time series cross-validation

- Minimizing the AIC is asymptotically equivalent to minimizing MSE via one-step cross-validation. (Akaike, 1969, 1973).
Some connections

Cross-sectional data
- Minimizing the AIC is asymptotically equivalent to minimizing MSE via leave-one-out cross-validation. (Stone, 1977).

Time series cross-validation
- Minimizing the AIC is asymptotically equivalent to minimizing MSE via one-step cross-validation. (Akaike, 1969, 1973).
Assume k is the minimum number of observations for a training set.

- Select observation $k + i$ for test set, and use observations at times $1, 2, \ldots, k + i - 1$ to estimate model.
- Compute error on forecast for time $k + i$.
- Repeat for $i = 0, 1, \ldots, T - k$ where T is total number of observations.
- Compute accuracy measure over all errors.
Example: Pharmaceutical sales

Antidiabetic drug sales

Year

$ million

1995 2000 2005

Forecasting using R

Time series cross-validation
Which of these models is best?

- Linear model with trend and seasonal dummies applied to log data.
- ARIMA model applied to log data
- ETS model applied to original data

Set $k = 48$ as minimum training set.

Forecast 12 steps ahead based on data to time $k + i - 1$ for $i = 1, 2, \ldots, 156$.

Compare MAE values for each forecast horizon.
Example: Pharmaceutical sales

Which of these models is best?

- Linear model with trend and seasonal dummies applied to log data.
- ARIMA model applied to log data
- ETS model applied to original data

- Set $k = 48$ as minimum training set.
- Forecast 12 steps ahead based on data to time $k + i − 1$ for $i = 1, 2, \ldots, 156$.
- Compare MAE values for each forecast horizon.
Example: Pharmaceutical sales

Forecasting using R

Time series cross-validation
Example: Pharmaceutical sales

```r
k <- 48
n <- length(a10)
mae1 <- mae2 <- mae3 <- matrix(NA,n-k-12,12)
for(i in 1:(n-k-12)) {
  xshort <- window(a10,end=1995+(5+i)/12)
  xnext <- window(a10,start=1995+(6+i)/12,end=1996+(5+i)/12)
  fit1 <- tslm(xshort ~ trend + season, lambda=0)
  fcast1 <- forecast(fit1,h=12)
  fit2 <- auto.arima(xshort,D=1, lambda=0)
  fcast2 <- forecast(fit2,h=12)
  fit3 <- ets(xshort)
  fcast3 <- forecast(fit3,h=12)
  mae1[i,] <- abs(fcast1[['mean']]-xnext)
  mae2[i,] <- abs(fcast2[['mean']]-xnext)
  mae3[i,] <- abs(fcast3[['mean']]-xnext)
}
plot(1:12,colMeans(mae1),type="l",col=2,xlab="horizon",ylab="MAE",
     ylim=c(0.58,1.0))
lines(1:12,colMeans(mae2),type="l",col=3)
lines(1:12,colMeans(mae3),type="l",col=4)
legend("topleft",legend=c("LM","ARIMA","ETS"),col=2:4,lty=1)
```
Variations on time series cross validation

- Keep training window of fixed length.

```r
xshort <- window(a10, start=i+1/12, end=1995+(5+i)/12)
```

- Compute one-step forecasts in out-of-sample period.

```r
for(i in 1:(n-k))
{
  xshort <- window(a10, end=1995+(5+i)/12)
  xlong <- window(a10, start=1995+(6+i)/12)
  fit2 <- auto.arima(xshort, D=1, lambda=0)
  fit2a <- Arima(xlong, model=fit2)
  fit3 <- ets(xshort)
  fit3a <- ets(xlong, model=fit3)
  mae2a[i,] <- abs(residuals(fit3a))
  mae3a[i,] <- abs(residuals(fit2a))
}
```
Outline

1 Time series cross-validation

2 Lab session 13
Lab Session 13