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Stationarity Stationary?

Sale of new one—family homes, USA
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If {y:} is a stationary time series, then for all s,
the distribution of (y, .. ., yt;s) does not
depend on t.
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Total sales

A stationary series is:
m roughly horizontal 40
m constant variance
®m no patterns predictable in the long-term 1975 1980 1985 1990 1995

Year
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Stationary? Stationarity

Price of a dozen eggs in 1993 dollars

300- If {y:} is a stationary time series, then for all s,
the distribution of (yt, . .., yt.s) does not
- depend on t.
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Transformations help to stabilize the variance.
] For ARIMA modelling, we also need to stabilize
. . . ! the mean.
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Stationary? Non-stationarity in the mean
Number of pigs slaughtered in Victoria
Identifying non-stationary series
110000 -
m time plot.
,, 100000~ m The ACF of stationary data drops to zero
° 3 .
3 relatively quickly
o
S 900007 m The ACF of non-stationary data decreases
slowly.
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m For non-stationary data, the value of rq is
. . . often large and positive.
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Stationary? Example: Dow-Jones index
Annual Canadian Lynx Trappings Dow Jones index (daily ending 15 Jul 94)
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example: Dow-jones index
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Example: Dow-Jones index Differencing

50-

m Differencing helps to stabilize the mean.

m The differenced series is the change
between each observation in the original
series: y; = Yt — Yi_1.

m The differenced series will have only T — 1
values since it is not possible to calculate a
difference y; for the first observation.

o
'

Change in Dow-Jones Index
S
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Example: Dow-Jones index

Time Series and Forecasting

Second-order differencing

Occasionally the differenced data will not
appear stationary and it may be necessary to
difference the data a second time:

| | Vi =VYi— Vi1
| ‘ ‘ = (Yt - Yt—1) - (Yt—1 - Yt—z)
=Yt — 2¥i—1 + Yi—2.

-0.05-

-0.10- .
______________________________________________ m y; will have T — 2 values.
6 5 fo s 20 2 m In practice, it is almost never necessary to

go beyond second-order differences.
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Seasonal differencing

A seasonal difference is the difference between
an observation and the corresponding
observation from the previous year.

Ye =Yt — Ye-m

where m = number of seasons.
m For monthly datam = 12.
m For quarterly datam = 4.

Time Series and Forecasting Differencing

Antidiabetic drug sales

Antidiabetic drug sales
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Year
> autoplot(al0)
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Antidiabetic drug sales

Log Antidiabetic drug sales

Differencing
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Annaul change in monthly log sales
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> autoplot (diff (log(alO®arli2))

Time Series and Forecasting Differencing

Electricity production

US monthly electricity total net generation
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Year
> autoplot(usmelec)

Time Series and Forecasting Differencing

Electricity production

Log electricity net generation
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> autoplot(log(alQ))  Year > autoplot (log(usmelec)gar
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Electricity production Seasonal differencing

When both seasonal and first differences are applied...

m it makes no difference which is done first—the result
will be the same.

o

m If seasonality is strong, we recommend that seasonal
differencing be done first because sometimes the
resulting series will be stationary and there will be
no need for further first difference.

o
o
[

Seasonally differenced logs

It is important that if differencing is used, the differences
are interpretable.

1980 1990 2000 2010

Year
> autoplot(diff (log(usmelec),12))
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Electricity production Outline
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> autoplot(diff(diff (log(usmelec),12),1))
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Electricity production
m Seasonally differenced series is closer to
being stationary.
m Remaining non-stationarity can be removed
with further first difference.

Autoregressive models

Autoregressive (AR) models:

Ye = C+ P1Yi—1 + daYi—o + - + PpYip + €,

where e; is white noise.This is a multiple regression with
lagged values of y; as predictors.

If y; = vt — ¥t—12 denotes seasonally differenced ) -
series, then twice-differenced series is 250-
* / / | |
Yt — Yt — Yt_j_ 12 225
= (Yt — Yt—12) - (yt—l — Yt_j_g) 101 20.0-
=Yt — Yt—1 — Yt—12 T Yt—13 - N 17.5-
15.0

0 25 50 75 100 0 25 50 75 100
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AR(1) model ARIMA models

Yt = C+ d1Yi1 + € J Autoregressive Integrated Moving Average models
ARIMA(p, d, g) model

® When ¢, = 0, y; is equivalent to WN AR: p = order of the autoregressive part

m When ¢, = 1and ¢ = 0, y; is equivalent to I: d = degree of first differencing involved
aRW MA: g = order of the moving average part.

= When ¢1=1 and c 7& 0, y¢is equivalent to m White noise model: ARIMA(0,0,0)

a RW with drift . m Random walk: ARIMA(0,1,0) with no constant
= When ¢, < 0, y; tends to oscillate between m Random walk with drift: ARIMA(0,1,0) with const.
positive and negative values. = AR(p): ARIMA(p,0,0)
= MA(q): ARIMA(0,0,9)
Moving Average (MA) models US personal consumption

g US consumption
Moving Average (MA) models:

Yi=C+ e+ 91et,1 aF Hzetfz GecegF qut,q,

where e; is white noise.This is a multiple regression with

S
S
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ARIMA models US personal consumption
> fit <- auto.arima(usconsumption[, 1])
Autoregressive Moving Average models: > fit
_ Series: usconsumption[, 1]
yr=c+ ¢1Yt_1 +ot QSPW_” ARIMA(2,0,2) with non-zero mean
+ 91et_1 oo 9qet_q + é;.
Coefficients:
. . arl ar2 mal ma2 intercept
m Predictors include both lagged values of y; and 1.3858 -0.5787 -1.1797 0.5633 0.0075

lagged errors. s.e. 0.2470 0.2040 0.2305 0.1409 0.0009
® Some constraints on coefficients to ensure

identifiability and numerical stability. sigma”2 estimated as 3.593e-05: log likelihood=682.77

AIC=-1353.54 AICc=-1353.06 BIC=-1334.25
Autoregressive Integrated Moving Average models ARIMA(2,0,2) model:
m Combine ARMA model with differencing. ye = € + 1.3858y;_, — 0.578y;_, + e, — 1.17974e,_, + 0.5633e;_,,
m(1- B)dyt follows an ARMA model. where e; is white noise with std dev 0.0060 = 1/3.593 x 10-5.
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US personal consumption Outline

Forecasts from ARIMA(2,0,2) with non-zero mean

Ievel
¥ Estimation and order selection
-0.01-

1995 2000 2005 201 0 201 5

Time
plot (forecast(fit,h=10),include=80)
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Understanding ARIMA models Maximum likelihood estimation

Having identified the model order, we need to estimate

m If c = 0andd = 0, the long-term forecasts will go to
the parametersc, ¢1,..., ¢p, 01, ..., 0,

zero.
m If c = 0and d = 1, the long-term forecasts will go to m MLE is very similar to least squares estimation
a non-zero constant. obtained by minimizing
m If c = 0and d = 2, the long-term forecasts will T
follow a straight line. Z .
. i
m If c # 0and d = 0, the long-term forecasts will go to 1
the mean of the data.
m Ifc # 0and d = 1, the long-term forecasts will = Th‘? Arl'ma() command allows CLS or MLE
follow a straight line. estimation.
m If ¢ # 0and d = 2, the long-term forecasts will m Non-linear optimization must be used in either case.
follow a quadratic trend. m Different software will give different estimates.
Understanding ARIMA models Information criteria

Forecast variance and d

m The higher the value of d, the more rapidly the
prediction intervals increase in size.

m Ford = 0, the long-term forecast standard deviation where Lis the likelihood of the data,
will go to the standard deviation of the historical k=1ifc#0andk=0ifc=0.
data. Corrected AIC:

Cyclic behaviour AIC. — AIC +

m For cyclic forecasts, p > 2 and some restrictions on T-p—q-k-2
coefficients are required.

m If p = 2, we need ¢? + 4¢, < 0. Then average cycle
of length

Akaike’s Information Criterion (AIC):

AlIC = —2log(L)+2(p+ g+ k+ 1),

(p+q+k+1)(p+q+k+2)

Bayesian Information Criterion:

BIC = AIC + (log(T) — 2)(p + q + k — 1).

(27)/ [arc cos(— 1 (1 — ¢2)/(4¢2))] . Good models are obtained by minimizing either the AIC, AIC. or

BIC. Our preference is to use the AIC..
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How does auto.arima() work? Seasonally adjusted electrical equipment

A non-seasonal ARIMA(p, d, q) process
Need to select appropriate orders: p, g, d and whether a

m Time plot shows sudden changes,

constant is required. particularly big drop in 2008/2009 due to
Hyndman and Khandakar (JSS, 2008) algorithm: global economic environment. Otherwise
m Select no. differences d and D via unit root tests. nothing unusual and no need for data
m Select p, g and ¢ by minimising AlCc. adjustments.

m Use stepwise search to traverse model space.

m No evidence of changing variance, so no
Box-Cox transformation.

m Data are clearly non-stationary, suggesting
first differences.

Time Series and Forecasting ARIMA modelling in R Time Series and Forecasting ARIMA modelling in R a7

How does auto.arima() work? Seasonally adjusted electrical equipment

> fit <- auto.arima(eeadj)

Step 1: Select current model (with smallest AlCc) > summary (fit)
from: ARIMA(3,1,0)
ARIMA(2,d, 2) Cootfics
ARIMA(O d 0) oe icients:
» ari ar2 ar3
ARIMA(1,d, 0) -0.3418 -0.0426 0.3185
ARIMA(0O, d, 1) s.e. 0.0681 0.0725 0.0682

Step 2: Consider variations of current model:
e vary one of p, g from current model by +1
e p, q both vary from current model by +1
e Include/exclude ¢ from current model > gghct (residuals(£it))
Model with lowest AlCc becomes current model.
Repeat Step 2 until no lower AICc can be found. > autoplot (forecast (fit))

sigma”2 estimated as 9.639: log likelihood=-493.8
AIC=995.6  AICc=995.81 BIC=1008.67
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Seasonally adjusted electrical equipment

Series: residuals(fit)

L 1 1
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Seasonally adjusted electrical equipment
Forecasts from ARIMA(3,1,0)
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Prediction intervals

m Prediction intervals increase in size with forecast
horizon.

m Prediction intervals can be difficult to calculate by
hand

m Calculations assume residuals are uncorrelated and
normally distributed.
m Prediction intervals tend to be too narrow.

the uncertainty in the parameter estimates has not been
accounted for.

the ARIMA model assumes historical patterns will not
change during the forecast period.

the ARIMA model assumes uncorrelated future errors
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Outline

A seasonal ARIMA models
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Seasonal ARIMA models

ARIMA (padvq) (P7 D7 Q)m
—_—— ——

Non- Seasonal
seasonal part of
part of the the
model model

where m = number of periods per season.
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European quarterly retail trade

> plot(euretail)
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European quarterly retail trade European quarterly retail trade

diff(euretail, 4)

- > autoplot(diff (euretail,4))
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European quarterly retail trade
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> autoplot(diff (diff (euretail,4)))
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European quarterly retail trade

> auto.arima(euretail)
Series: euretail
ARIMA(1,1,2)(0,1,1) [4]

Coefficients:
arl mal ma?2 smal
0.736 -0.466 0.216 -0.843
s.e. 0.224 0.199 0.210 0.188

sigma”2 estimated as 0.159: log likelihood=-29.62

AIC=69.24  AICc=70.38 BIC=79.63

Time Series and Forecasting Seasonal ARIMA models

2012

> auto.arima(euretail, stepwise=FALSE,
approximation=FALSE)
ARIMA(0,1,3)(0,1,1) [4]

Coefficients:
mal ma2 ma3 smal
0.263 0.369 0.420 -0.664
s.e. 0.124 0.126 0.129 0.155

sigma”2 estimated as 0.156: log likelihood=-28.63
AIC=67.26  AICc=68.39 BIC=77.65
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European quarterly retail trade
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European quarterly retail trade

Series: residuals(fit)
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Forecasts from ARIMA(0,1,3)(0,1,1)[4]
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Outline

ARIMA vs ETS
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ARIMA vs ETS

m Myth that ARIMA models are more general than
exponential smoothing.

m Linear exponential smoothing models all special
cases of ARIMA models.

m Non-linear exponential smoothing models have no
equivalent ARIMA counterparts.

® Many ARIMA models have no exponential
smoothing counterparts.

m ETS models all non-stationary. Models with
seasonality or non-damped trend (or both) have two
unit roots; all other models have one unit root.

Time Series and Forecasting ARIMA vs ETS 63

Simple exponential smoothing

m Forecasts equivalent to ARIMA(0,1,1).
m Parameters: 01 = o — 1.

Holt’s method

m Forecasts equivalent to ARIMA(0,2,2).

m Parameters: 0y = a+ §—2andf, =1 — a.
Damped Holt’s method

m Forecasts equivalent to ARIMA(1,1,2).

m Parameters: g1 = ¢, 01 = a + ¢ — 2,0, = (1 — a)¢.
Holt-Winters’ additive method

m Forecasts equivalent to ARIMA(0,1,m+1)(0,1,0),,.
m Parameter restrictions because ARIMA has m + 1 parameters
whereas HW uses only three parameters.

Holt-Winters’ multiplicative method
m No ARIMA equivalence
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