
Time Series and Forecas�ng 1

Time Series and
Forecas�ng

ARIMA models

Outline

1 Sta�onarity

2 Differencing

3 Non-seasonal ARIMA models

4 Es�ma�on and order selec�on

5 ARIMA modelling in R

6 Seasonal ARIMA models

7 ARIMA vs ETS

Time Series and Forecas�ng Sta�onarity 2

Sta�onarity

Defini�on
If {yt} is a sta�onary �me series, then for all s,
the distribu�on of (yt, . . . , yt+s) does not
depend on t.

A sta�onary series is:
roughly horizontal
constant variance
no pa�erns predictable in the long-term
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Sta�onary?
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Sta�onarity

Defini�on
If {yt} is a sta�onary �me series, then for all s,
the distribu�on of (yt, . . . , yt+s) does not
depend on t.

Transforma�ons help to stabilize the variance.

For ARIMA modelling, we also need to stabilize
the mean.
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Non-sta�onarity in the mean

Iden�fying non-sta�onary series
�me plot.
The ACF of sta�onary data drops to zero
rela�vely quickly
The ACF of non-sta�onary data decreases
slowly.
For non-sta�onary data, the value of r1 is
o�en large and posi�ve.
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Example: Dow-Jones index
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Example: Dow-Jones index
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Differencing

Differencing helps to stabilize the mean.
The differenced series is the change
between each observa�on in the original
series: y�t = yt − yt−1.
The differenced series will have only T − 1
values since it is not possible to calculate a
difference y�1 for the first observa�on.
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Second-order differencing
Occasionally the differenced data will not
appear sta�onary and it may be necessary to
difference the data a second �me:

y��t = y�t − y�t−1
= (yt − yt−1)− (yt−1 − yt−2)
= yt − 2yt−1 + yt−2.

y��t will have T − 2 values.
In prac�ce, it is almost never necessary to
go beyond second-order differences.
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Seasonal differencing

A seasonal difference is the difference between
an observa�on and the corresponding
observa�on from the previous year.

y�t = yt − yt−m

wherem = number of seasons.
For monthly datam = 12.
For quarterly datam = 4.
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An�diabe�c drug sales
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Electricity produc�on
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Electricity produc�on
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Electricity produc�on
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Electricity produc�on
Seasonally differenced series is closer to
being sta�onary.
Remaining non-sta�onarity can be removed
with further first difference.

If y�t = yt − yt−12 denotes seasonally differenced
series, then twice-differenced series is

y∗t = y�t − y�t−1
= (yt − yt−12)− (yt−1 − yt−13)
= yt − yt−1 − yt−12 + yt−13 .
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Seasonal differencing

When both seasonal and first differences are applied. . .
it makes no difference which is done first—the result
will be the same.
If seasonality is strong, we recommend that seasonal
differencing be done first because some�mes the
resul�ng series will be sta�onary and there will be
no need for further first difference.

It is important that if differencing is used, the differences
are interpretable.
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Autoregressive models
Autoregressive (AR) models:

yt = c+ φ1yt−1 + φ2yt−2 + · · ·+ φpyt−p + et,

where et is white noise.This is a mul�ple regression with
lagged values of yt as predictors.
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AR(1) model
yt = c+ φ1yt−1 + et

When φ1 = 0, yt is equivalent to WN
When φ1 = 1 and c = 0, yt is equivalent to
a RW
When φ1 = 1 and c �= 0, yt is equivalent to
a RW with dri�
When φ1 < 0, yt tends to oscillate between
posi�ve and nega�ve values.
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Moving Average (MA) models
Moving Average (MA) models:

yt = c+ et + θ1et−1 + θ2et−2 + · · ·+ θqet−q,

where et is white noise.This is a mul�ple regression with
past errors as predictors. Don’t confuse this with moving
average smoothing!
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ARIMA models

Autoregressive Moving Average models:
yt = c+ φ1yt−1 + · · ·+ φpyt−p

+ θ1et−1 + · · ·+ θqet−q + et.

Predictors include both lagged values of yt and
lagged errors.
Some constraints on coefficients to ensure
iden�fiability and numerical stability.

Autoregressive Integrated Moving Average models
Combine ARMA model with differencing.
(1− B)dyt follows an ARMA model.
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ARIMA models
Autoregressive Integrated Moving Average models
ARIMA(p, d, q) model
AR: p = order of the autoregressive part
I: d = degree of first differencing involved

MA: q = order of the moving average part.

White noise model: ARIMA(0,0,0)
Random walk: ARIMA(0,1,0) with no constant
Random walk with dri�: ARIMA(0,1,0) with const.
AR(p): ARIMA(p,0,0)
MA(q): ARIMA(0,0,q)
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US personal consump�on
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US personal consump�on
> fit <- auto.arima(usconsumption[, 1])

> fit

Series: usconsumption[, 1]

ARIMA(2,0,2) with non-zero mean

Coefficients:

ar1 ar2 ma1 ma2 intercept

1.3858 -0.5787 -1.1797 0.5633 0.0075

s.e. 0.2470 0.2040 0.2305 0.1409 0.0009

sigma^2 estimated as 3.593e-05: log likelihood=682.77

AIC=-1353.54 AICc=-1353.06 BIC=-1334.25

ARIMA(2,0,2) model:
yt = c+ 1.3858yt−1 − 0.578yt−2 + et − 1.17974et−1 + 0.5633et−2,

where et is white noise with std dev 0.0060 =
√
3.593× 10−5.
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US personal consump�on
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plot(forecast(fit,h=10),include=80)

Understanding ARIMA models

If c = 0 and d = 0, the long-term forecasts will go to
zero.
If c = 0 and d = 1, the long-term forecasts will go to
a non-zero constant.
If c = 0 and d = 2, the long-term forecasts will
follow a straight line.
If c �= 0 and d = 0, the long-term forecasts will go to
the mean of the data.
If c �= 0 and d = 1, the long-term forecasts will
follow a straight line.
If c �= 0 and d = 2, the long-term forecasts will
follow a quadra�c trend.
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Understanding ARIMA models
Forecast variance and d

The higher the value of d, the more rapidly the
predic�on intervals increase in size.
For d = 0, the long-term forecast standard devia�on
will go to the standard devia�on of the historical
data.

Cyclic behaviour
For cyclic forecasts, p > 2 and some restric�ons on
coefficients are required.
If p = 2, we need φ21 + 4φ2 < 0. Then average cycle
of length

(2π)/ [arc cos(−φ1(1− φ2)/(4φ2))] .
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Maximum likelihood es�ma�on
Having iden�fied the model order, we need to es�mate
the parameters c, φ1, . . . , φp, θ1, . . . , θq.

MLE is very similar to least squares es�ma�on
obtained by minimizing

T�

t−1
e2t .

The Arima() command allows CLS or MLE
es�ma�on.
Non-linear op�miza�on must be used in either case.
Different so�ware will give different es�mates.
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Informa�on criteria
Akaike’s Informa�on Criterion (AIC):

AIC = −2 log(L) + 2(p+ q+ k + 1),

where L is the likelihood of the data,
k = 1 if c �= 0 and k = 0 if c = 0.
Corrected AIC:

AICc = AIC+
2(p+ q+ k + 1)(p+ q+ k + 2)

T − p− q− k − 2 .

Bayesian Informa�on Criterion:
BIC = AIC+ (log(T)− 2)(p+ q+ k − 1).

Good models are obtained by minimizing either the AIC, AICc or
BIC. Our preference is to use the AICc.
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How does auto.arima() work?
A non-seasonal ARIMA(p, d, q) process
Need to select appropriate orders: p, q, d and whether a
constant is required.

Hyndman and Khandakar (JSS, 2008) algorithm:
Select no. differences d and D via unit root tests.
Select p, q and c by minimising AICc.
Use stepwise search to traverse model space.
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How does auto.arima() work?

Step 1: Select current model (with smallest AICc)
from:
ARIMA(2, d, 2)
ARIMA(0, d, 0)
ARIMA(1, d, 0)
ARIMA(0, d, 1)

Step 2: Consider varia�ons of current model:
• vary one of p, q from current model by±1
• p, q both vary from current model by±1
• Include/exclude c from current model
Model with lowest AICc becomes current model.

Repeat Step 2 un�l no lower AICc can be found.
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Seasonally adjusted electrical equipment

Time Series and Forecas�ng ARIMA modelling in R 46

80

90

100

110

2000 2005 2010
Year

S
ea

so
na

lly
 a

dj
us

te
d 

ne
w

 o
rd

er
s 

in
de

x

Seasonally adjusted electrical equipment

Time plot shows sudden changes,
par�cularly big drop in 2008/2009 due to
global economic environment. Otherwise
nothing unusual and no need for data
adjustments.
No evidence of changing variance, so no
Box-Cox transforma�on.
Data are clearly non-sta�onary, sugges�ng
first differences.
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Seasonally adjusted electrical equipment

> fit <- auto.arima(eeadj)

> summary(fit)

ARIMA(3,1,0)

Coefficients:

ar1 ar2 ar3

-0.3418 -0.0426 0.3185

s.e. 0.0681 0.0725 0.0682

sigma^2 estimated as 9.639: log likelihood=-493.8

AIC=995.6 AICc=995.81 BIC=1008.67

> ggAcf(residuals(fit))

> autoplot(forecast(fit))
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Seasonally adjusted electrical equipment
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Predic�on intervals

Predic�on intervals increase in size with forecast
horizon.
Predic�on intervals can be difficult to calculate by
hand
Calcula�ons assume residuals are uncorrelated and
normally distributed.
Predic�on intervals tend to be too narrow.

the uncertainty in the parameter es�mates has not been
accounted for.
the ARIMA model assumes historical pa�erns will not
change during the forecast period.
the ARIMA model assumes uncorrelated future errors
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Seasonal ARIMA models

ARIMA (p, d, q)� �� � (P,D,Q)m� �� �

↑ ↑


Non-
seasonal
part of the
model







Seasonal
part of
the
model




wherem = number of periods per season.
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European quarterly retail trade
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European quarterly retail trade
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European quarterly retail trade
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European quarterly retail trade

> auto.arima(euretail)

Series: euretail

ARIMA(1,1,2)(0,1,1)[4]

Coefficients:

ar1 ma1 ma2 sma1

0.736 -0.466 0.216 -0.843

s.e. 0.224 0.199 0.210 0.188

sigma^2 estimated as 0.159: log likelihood=-29.62

AIC=69.24 AICc=70.38 BIC=79.63
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European quarterly retail trade

> auto.arima(euretail, stepwise=FALSE,

approximation=FALSE)

ARIMA(0,1,3)(0,1,1)[4]

Coefficients:

ma1 ma2 ma3 sma1

0.263 0.369 0.420 -0.664

s.e. 0.124 0.126 0.129 0.155

sigma^2 estimated as 0.156: log likelihood=-28.63

AIC=67.26 AICc=68.39 BIC=77.65
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European quarterly retail trade
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European quarterly retail trade
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ARIMA vs ETS

Myth that ARIMA models are more general than
exponen�al smoothing.
Linear exponen�al smoothing models all special
cases of ARIMA models.
Non-linear exponen�al smoothing models have no
equivalent ARIMA counterparts.
Many ARIMA models have no exponen�al
smoothing counterparts.
ETS models all non-sta�onary. Models with
seasonality or non-damped trend (or both) have two
unit roots; all other models have one unit root.
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Equivalences
Simple exponen�al smoothing

Forecasts equivalent to ARIMA(0,1,1).
Parameters: θ1 = α− 1.

Holt’s method
Forecasts equivalent to ARIMA(0,2,2).
Parameters: θ1 = α + β − 2 and θ2 = 1− α.

Damped Holt’s method
Forecasts equivalent to ARIMA(1,1,2).
Parameters: φ1 = φ, θ1 = α + φβ − 2, θ2 = (1− α)φ.

Holt-Winters’ addi�ve method
Forecasts equivalent to ARIMA(0,1,m+1)(0,1,0)m.
Parameter restric�ons because ARIMA hasm + 1 parameters
whereas HW uses only three parameters.

Holt-Winters’ mul�plica�ve method
No ARIMA equivalence
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