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Component form

Time Series and Forecast equation  ¥ipe = £
Smoothing equation b=ayi+ (1 — a)li4
Forecasting = ayrt (1—a)ly
ly=ay,+(1—a)ly = ay; + (1 — a)ys + (1 — )
2
li=ays+(1—a)la =Y a(l—a)ys;+(1—a)
j=0
t—1 )
Exponential smoothing methods b= 2; o1 = afyej+ (1 =)l
=

Time Series and Forecasting Simple exponential smoothing

Simple Exponential Smoothing

Outline

Simple exponential smoothing Forecast equation
t

Jeme= > a(l—a)Ty+(1-a)lte, (0<a<1)
j=1

Weights assigned to observations for:
Observation « =0.2 a=04 a=0.6 a=0.8

7 0.2 0.4 0.6 0.8

Yt—1 0.16 0.24 0.24 0.16

Y2 0.128 0.144 0.096 0.032

Vi_a 0.1024 0.0864 0.0384 0.0064
Veos (0.2)(0.8)* (0.4)(0.6)* (0.6)(0.4)* (0.8)(0.2)*
Veos (0.2)(0.8)° (0.4)(0.6)° (0.6)(0.4)° (0.8)(0.2)°
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Simple methods Simple Exponential Smoothing

Time series y1, Y, ..., YT Component form

Random walk forecasts Forecast equation Verhie = Gt
)A’T+h|T =VYr Smoothing equation U= ayt+ (1 — a)li—q
Average forecasts State space form
N T . .
YT+hT = % thl Yt Observation equation Ve =Vli—1 + €

State equation Uy = b1 + aey

m Want something in between that weights most )
recent data more highly. moet=yr—l1=Ye— Vo fort=1,....T, the one-step

. . . ) within-sample forecast error at time t.
m Simple exponential smoothing uses a weighted

moving average with weights that decrease
exponentially.

m /; is an unobserved “state” that follows a random walk.
m Need to estimate « and /.

Time Series and Forecasting Simple exponential smoothing 3 Time Series and Forecasting Simple exponential smoothing 6



SesimR

m Need to choose value for o and £,

m Similarly to regression — we choose « and ¢, by

minimising SSE: fit <- ses(oildata, h=3)

autoplot (fit)
;

SSE = Z(yt — Pre-1)’ accuracy (fit)
t=1

m Unlike regression there is no closed form solution —
use numerical optimization.

Time Series and Forecasting Simple exponential smoothing

Simple exponential smoothing

Time Series and Forecasting Simple exponential smoothing

Example: Oil production

Year Time Observation Level Forecast Error

t Yt L )A’t\t—i &
1995 0 446.80 .
1996 1 44536  445.66 446.80 -1.43 7SSV Multi-step forecasts
1997 2 45320  451.65 44566  7.54 _ VI % & .
1998 3 45441 45385 45165 275 f=aye+ (1= a)l YT+hT = Y1+1IT5 h=2.3,...
1999 4 42238 42881 45385 -31.47
2000 5 45604 45047 42881 27.23 o = 0.796and e in .
2001 6  440.39 44245 45047 -10.09  {, — 446.80 m A “flat” forecast function.
2002 7 42519 42872 44245 -17.25  are obtained by ; :
2003 8 48621 47446 42872 57.49  minimising SSE over m Remember, a forecast is an estimated mean of a
2004 9 50043 49512 47446 2597 periodst=1,2,...,12. future value.
2005 10 52128 51593 49512 26.15 ) .
2006 11 508.95 510.37 51593 -6.98 m So with no trend, no seasonallty, and no other
2007 12 488.89  493.28 510.37 -21.49 patterns, the forecasts are constant.
h VT+h\T
2008 1 493.28
2009 2 493.28
2010 3 493.28

Time Series and Forecasting Simple exponential smoothing Time Series and Forecasting Simple exponential smoothing

Example: Oil production Outline

525-

500~

—_— EFl Trend methods

series
475 - — Data
— Fitted
— Forecasts

Qil (millions of tonnes)

450-

425-

2000 2005 2010
Year
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Holt’s local trend method Comparing Holt and SES

m Holt (1957) extended SES to allow forecasting of
data with trends.

m Two smoothing parameters: « and 3* (with values
between 0 and 1).

m Holt’s method will almost always have better
in-sample RMSE because it is optimized over one
additional parameter.

Vint = L + hby m It may not be better on other measures.
by =ayt+ (1 — a)(l-1+ bt 1) ® You need to compare out-of-sample RMSE (using a
by = (bt — li—1) + (1 — B )bi—1 test set) for the comparison to be useful.

m But we don’t have enough data.

m /; denotes an estimate of the level of the series at = A better method for comparison will be coming up!

time t
m b; denotes an estimate of the slope of the series at
time t.
Time Series and Forecasting Trend methods 13 Time Series and Forecasting Trend methods
Holt’s linear trend Additive damped trend
Component form m Gardner and McKenzie (1985) suggested that the trends
Forecast Vepnit = le + hby should be “damped” to be more conservative for longer
Level 0 L@ J(le_1 + be_1) forecast horizons.
t= a*yt AN o m Damping parameter 0 < ¢ < 1.
Trend bt = ﬂ (ft = ft_1) aF (1 — 5 )bt—17

- State space form
State space form . N
Forecast equation  Je.pe = ¢ + (6 + 62 + - + ¢")by

Observation equation Y=Vl 1+bt1+et

) Observation equation Vi =1+ dbt_1 + ey
Sl S et ét = f;tfl +be-1 +aer State equations by = le—1 + dbt_1 + aey
t = bes + fer bt = ¢be_1 + Bey
m 3=ap* m If ¢ = 1, identical to Holt’s linear trend.
moer =yt (f—1+bt1) =yt — Vet B Ash — 00, frinr — br + ¢br/(1 — ¢).
= Need to estimate a, 3, (o, bo. m Short-run forecasts trended, long-run forecasts constant.
Time Series and Forecasting Trend methods 14 Time Series and Forecasting Trend methods 17
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Holt’s method in R Example: Air passengers

-

series

air <- window(ausair, start=1990, end=2004) o
— Data

fit2 <- holt(air, h=5)

— Holt's linear trend

30- — Damped trend

Air passengers in Australia (millions

20-

fit3 <- holt(air, damped=TRUE, h=5)

1990 1995 2000 2005
Year

Time Series and Forecasting Trend methods 15 Time Series and Forecasting Trend methods 18



series

— Data

— HW Additive

— HW Multiplicative

®
S
v

@
°

Seasonal methods

International visitor night in Australia (millions)
IS
O

2008 2012 2016
Year
Holt-Winters additive method Holt-Winters damped method

m Holt and Winters extended Holt’s method to capture Often the single most accurate forecasting method for
seasonality. seasonal data:

m Three smoothing equations—one for the level, one for N P h
trend, and one for seasonality. Yetht = [gt + (¢ +o"+--+09 )bt]st—m+h$

m Parameters: 0<a <1, 0<3*<1,0<y<1-a and e = a(Ye/St—m) + (1 — @) (le—1 + ¢pbt_1)
m = period of seasonality. by = 5*(gt — gt_l) + (1 — 5*)¢bt_1

State space form St =1y ve + (1 —7)St—m

(be—1 + Pbe_1)

Jerhe = e+ hbe+Se_myn: b= [(h—1) modm)|+1
Ye="Lli-1+bt1 4 St-m + €t
by =Vli_1 + bt_1 + ey
by = b1 + fe;
St = St—m + V€.

Time Series and Forecasting Seasonal methods 20 Time Series and Forecasting Seasonal methods 23

Holt-Winters multiplicative Exponential smoothing methods

For when seasonal variations are changing proportional to the
level of the series.

Peshie = (8 + De)Se_mopt m Simple exponential smoothing: no trend.

= a2t £ (11— a)(fes + bey) ses SX) .
St—m m Holt’s method: linear trend.

be = (0t — le—1) + (1 — B")be—1 holt (x)

SR — (1 —7)St—m m Damped trend method.
(-1 + b-1) _

holt(x, damped=TRUE)
m With additive method s; is in absolute terms; within each m Holt-Winters methods
year ) ;s; ~ 0. hw(x, damped=TRUE, seasonal="additive")

m With multiplicative method s; is in relative terms: within
eachyear ) s~
m We optimize for «, 8*, 7, lo, bo, S0, S—1, - - -, S1—m-

Time Series and Forecasting Seasonal methods 21 Time Series and Forecasting Seasonal methods 24
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ﬂ Taxonomy of exponential smoothing methods

H Innovations state space models

Time Series and Forecasting Taxonomy of exponential smoothing methods Time Series and Forecasting Innovations state space models

Methods V Models

Exponential smoothing methods

Seasonal Component

Trend N A M
Component (None) (Additive) (Multiplicative) . .
N (None) (NN) NA) (N.M) Exponential smoothing methods
A (Additive) (AN)  (AA) (AM) m Algorithms that return point forecasts.
As  (Additive damped) | (Aq,N)  (Ag,A) (Ag,M)

. - . Innovations state space models
E;'s)) ﬂgﬁlﬁﬁ;’;ﬁﬁ;‘m ijOth'ng m Generate same point forecasts but can also generate
(Ag,N):  Additive damped trend method forecast intervals.
(AA): Additive Holt-Winters’ method m A stochastic (or random) data generating process

(A,M):  Multiplicative Holt-Winters’ method . L2
(Au,M): Damped multiplicative Holt-Winters' method that can generate an entire forecast distribution.
m Allow for “proper” model selection.

There are 9 separate exponential smoothing methods. J

Time Series and Forecasting Taxonomy of exponential smoothing methods Time Series and Forecasting Innovations state space models

Recursive formulae ETS models

Trend Seasonal
N A M
P Drat = G+ ey Drotit = oSt ety m Each model has an observation equation and
N 4= 1-a)t;- = —Stom) + (1= )ty b= a(ye/st-m) + (1 -a)ly- ope .
e RO AP O transition equations, one for each state (level, trend,
Drotle =+ by Drotle = o+ Mo+ S Deotle = 6+ 10005y seasonal), i.e., state space models.
A G=ay+(1-a) by +biq) Cr=alye—sim) + (1=a)(leoy +br-1) = a(ye/se-m) + (1 - a)(lp-y +be1) . ..
0= B G+ (=B b= PG 6o+ (1= )b 0= B 6= )+ (1B m Two models for each method: one with additive and
st =y =Cio1 = b))+ (L= Y)Stm st = Y@/ (Ce-1 = be-1)) + (1 = Y)stom . .« 1. . . .
PR Dot =G b 5 ot = €+ B e, one with multiplicative errors, i.e., in total 18
Ag G=ay+ (=)l +Pbr1) b= a(yr=se—m) + (1 =)oy +Pbr1) € = a(ye/st-m) + (1= a)(lr-1 + Pbe-1)
be = B~ L) 4 (1= F)Bboy by = (6~ Ceoa) + (1= B) b1y 0= B (G~ Coet) + (- B)pb-y models.
st= Y=l = Pbr)+ (L=P)seom st= Y@/ (loy = pbro1) + (L= p)stom ] ETS(Error’Trend,Seasonan:

Error= {A, M}
Trend = {N, A, Aq}
Seasonal = {N,A,M}.

Time Series and Forecasting Taxonomy of exponential smoothing methods 27 Time Series and Forecasting Innovations state space models 30



Model selection

Exponential smoothing methods
Innovations state space models

Akaike’s Information Criterion

w All ETS models can be written in innovations state
space form. AIC = —2log(L) + 2(k + 1)

where L is the likelihood and k is the number of

= Additive and multiplicative error versions give the parameters and initial states estimated in the model.

same point forecasts but different prediction

. Corrected AIC
intervals. ) ”
2 1 2
Examples: CIIUI 1IE1IU dEddUlidl AIC. = AIC + w
AN,N:  Simple exponential smoothing with additive errors T—k
AAN: Holt’s linear method with additive errors . . .
M,A,M:  Multiplicative Holt-Winters’ method with multiplicative errors which is the AIC corrected (fOf’ small Sample bIaS).

Bayesian Information Criterion

BIC = AIC + (k + 1)(log(T) — 2).

Time Series and Forecasting Innovations state space models 31 Time Series and Forecasting Innovations state space models 34

Exponential smoothing Some unstable models
Seasonal Component
Trend N A M
Component (None) (Additive) (Multiplicative) m Some of the combinations of (Error, Trend, Seasonal)
i hems) NN NA NM can lead to numerical difficulties; see equations with
A (Additive) AN AA AM L
» division by a state.
Aq  (Additive damped) | Ag4,N Ag,A Ag,M
General notation ETS(Error,Trend,Seasonal) m These are: ETS(A,N,M), ETS(A,A,M), ETS(A,Aq,M).
ExponenTial Smoothing m Models with multiplicative errors are useful for
ETS(A,N,N):  Simple exponential smoothing with additive er- strictly positive data, but are not numerically stable
rors with data containing zeros or negative values. In that
ETS(M,N,N):  Simple exponential smoothing with multiplicat- case only the six fully additive models will be
ive errors applied.

ETS(A,A,N):  Holt’s linear method with additive errors
ETS(A,A,A):  Additive Holt-Winters’ method with additive er-

rors
Time Series and Forecasting Innovations state space models k73 Time Series and Forecasting Innovations state space models
Estimating ETS models Exponential smoothing models
Additive Error Seasonal Component
Trend N A M
m Smoothing parameters «, /3, v and ¢, and the initial (ST EIE: Wems)  (Palane) MU leEie)
states (o, bo, So, S s are estimated b NI ANNANA A
7> 700705 20,37, - ey 2mit ] ted by A (Additive) AAN  AAA Al
maximising the “likelihood” = the probability of the Ay (Additive damped) | AAGN  AALA U,
data arising from the specified model. 1
. . . Multiplicative Error Seasonal Component
m For models with additive errors equivalent to Trend N A ™
minimising SSE. Component (None)  (Additive) (Multiplicative)
. e . A N (None) M,N,N M,N,A M,N,M
m For models with multiplicative errors, not equivalent A (Additive) MAN  MAA M,AM
to minimising SSE. Ay (Additive damped) | M,Aq,N M,Aq4,A M,A4,M

m We will estimate models with the ets () function in
the forecast package.

Time Series and Forecasting Innovations state space models 33 Time Series and Forecasting Innovations state space models 36



Forecasting with ETS models Exponential smoothing

Forecasts from ETS(M,Ad,M)

Prediction intervals: cannot be generated using the 15-
methods.
m The prediction intervals will differ between models
with additive and multiplicative methods. b
m Exact formulae for some models. level
m More general to simulate future sample paths, ~09- 3‘5’
conditional on the last estimate of the states, and to
obtain prediction intervals from the percentiles of .
these simulated future paths. '
m Options are available in R using the forecast
function in the forecast package. 0.3- : : : :
1995 2000 2005 2010
Time
Outline Exponential smoothing
ETS(M,Ad,M)

Smoothing parameters:
alpha = 0.2481

beta = 2e-04
gamma = 2e-04
phi = 0.9722

Initial states:

1 =0.3948

b .0101

s .8688 0.8191 0.7579 0.7897 0.7041 1.2889
.3253 1.1718 1.1597 1.1018 1.0385 0.9744

= O O

E ETSinR sigma: 0.0654

AIC AICc BIC
-120.929 -117.638 -64.521

Time Series and Forecasting ETSinR 38 Time Series and Forecasting ETSinR 41

Exponential smoothing The ets () functioninR
Forecasts from ETS(M,Ad,M)

ets(y, model="ZZZ", damped=NULL,
additive.only=FALSE,

2 lambda=NULL, biasadj=FALSE,

lower=c(rep(0.0001,3),0.80),

80 upper=c(rep(0.9999,3),0.98),

95 opt.crit=c("lik","amse","mse","sigma", "mae"),

nmse=3,

0.6- bounds=c("both","usual","admissible"),
ic=c("aic","aicc","bic"), restrict=TRUE,
allow.multiplicative.trend=FALSE,

0 o 2000 2005 0N use.initial.values=FALSE, ...)

Time

Time Series and Forecasting ETSinR 39 Time Series and Forecasting ETSinR 42
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The ets () functionin R The forecast () functioninR

uy forecast(object,
The time series to be forecast. h=ifelse(object$m>1, 2*object$m, 10),
level=c(80,95), fan=FALSE,
B model

simulate=FALSE, bootstrap=FALSE,
npaths=5000, PI=TRUE,
lambda=object$lambda, biasadj=FALSE,...)

use the ETS classification and notation: “N” for none, “A”
for additive, “M” for multiplicative, or “Z” for automatic
selection. Default zzZ all components are selected using

the information criterion. B object: the object returned by the ets () function.
B damped m h: the number of periods to be forecast.
If damped=TRUE, then a damped trend will be used m level: the confidence level for the prediction intervals.
(either Aq or My). m fan: if fan=TRUE, suitable for fan plots.
damped=FALSE, then a non-damped trend will used. ®m simulate: If TRUE, prediction intervals generated via
If damped=NULL (the default), then either a damped or a simulation rather than analytic formulae. Even if FALSE

non-damped trend will be selected according to the simulation will be used if no algebraic formulae exist.
information criterion chosen.

Time Series and Forecasting ETSinR Time Series and Forecasting ETSinR

The ets () functioninR The forecast () functioninR

B bootstrap: If bootstrap=TRUE and simulate=TRUE, then
simulated prediction intervals use re-sampled errors
rather than normally distributed errors.

B additive.only
Only models with additive components will be considered
if additive.only=TRUE. Otherwise all models will be

considered. ® npaths: The number of sample paths used in computing
B lambda simulated prediction intervals.
Box-Cox transformation parameter. It will be ignored if m PI: If PI=TRUE, then prediction intervals are produced;
lambda=NULL (the default value). Otherwise, the time otherwise only point forecasts are calculated. If PI=FALSE,
series will be transformed before the model is estimated. then level, fan, simulate, bootstrap and npaths are all
When lambda is not NULL, additive.only is set to TRUE. ignored.
B biadadj ® lambda: The Box-Cox transformation parameter. Ignored if
Uses bias-adjustment when undoing Box-Cox lambda=NULL. Otherwise, forecasts are back-transformed
transformation for fitted values. via inverse Box-Cox transformation.

® biasadj: Apply bias adjustment after Box-Cox?

Time Series and Forecasting ETSinR Time Series and Forecasting ETSinR 47

The ets () functionin R

m lower,upper bounds for the parameter estimates of «, 5%,
~* and ¢.
B opt.crit=1ik (default) optimisation criterion used for
estimation.
® bounds Constraints on the parameters.
usual region - "bounds=usual";
admissible region - "bounds=admissible";
"bounds=both" (the default) requires the parameters to
satisfy both sets of constraints.
B ic=aic (the default) information criterion to be used in
selecting models.
B restrict=TRUE (the default) models that cause numerical
difficulties are not considered in model selection.
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