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Can you think of any forecas�ng methods for these data?

Some simple forecas�ng methods
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How would you forecast these data?

Some simple forecas�ng methods
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How would you forecast these data?

Some simple forecas�ng methods
Average method

Forecast of all future values is equal to mean of historical
data {y1, . . . , yT}.
Forecasts: ŷT+h|T = ȳ = (y1 + · · ·+ yT)/T
Op�mal for white noise.

Näıve method
Forecasts equal to last observed value.
Forecasts: ŷT+h|T = yT.
Op�mal for random walks
Consequence of efficient market hypothesis.

Seasonal näıve method
Forecasts equal to last value from same season.
Forecasts: ŷT+h|T = yT+h−km wherem = seasonal period
and k = �(h− 1)/m�+1.
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Which
method is
which?

Dri� method

Forecasts equal to last value plus average change.
Forecasts:

ŷT+h|T = yT +
h

T − 1

T�

t=2

(yt − yt−1)

= yT +
h

T − 1
(yT − y1).

Op�mal for random walks with dri�
Equivalent to extrapola�ng a line drawn between
first and last observa�ons.
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Which
method is
which?

Some simple forecas�ng methods

Mean: meanf(x, h=20)

Naive: naive(x, h=20) or rwf(x, h=20)

Seasonal naive: snaive(x, h=20)

Dri�: rwf(x, drift=TRUE, h=20)
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Forecas�ng residuals
Residuals in forecas�ng: difference between observed
value and its forecast based on all previous observa�ons:
et = yt − ŷt|t−1.

Assump�ons
1 {et} uncorrelated. If they aren’t, then informa�on

le� in residuals that should be used in compu�ng
forecasts.

2 {et} have mean zero. If they don’t, then forecasts
are biased.

Useful proper�es (for predic�on intervals)
3 {et} have constant variance.
4 {et} are normally distributed.
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Forecas�ng Dow-Jones index
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Dow-Jones naive forecasts
ŷt|t−1 = yt−1
et = yt − yt−1

Forecas�ng Dow-Jones index
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Forecas�ng Dow-Jones index

fc <- rwf(dj)

res <- residuals(fc)

autoplot(res)

ggplot(res, aes(res)) +

geom_density(fill = "salmon", bw = "SJ",

colour = NA)

ggAcf(res,main="")
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Exercise

1 Calculate the residuals from a seasonal
naive forecast applied to the quarterly
Australian beer produc�on data from 1992.

2 Test if the residuals are white noise.
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Exercise

1 Calculate the residuals from a seasonal
naive forecast applied to the quarterly
Australian beer produc�on data from 1992.

2 Test if the residuals are white noise.

beer <- window(ausbeer,start=1992)

fc <- snaive(beer)

res <- residuals(fc)

autoplot(res)

ggAcf(res)
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Measures of forecast accuracy
Let yt denote the tth observa�on and ŷt|t−1 denote its forecast based
on all previous data, where t = 1, . . . , T. Then the following
measures are useful.

MAE = T−1
T�

t=1

|yt − ŷt|t−1|

MSE = T−1
T�

t=1

(yt − ŷt|t−1)
2 RMSE =

����T−1
T�

t=1

(yt − ŷt|t−1)2

MAPE = 100T−1
T�

t=1

|yt − ŷt|t−1|/|yt|

MAE, MSE, RMSE are all scale dependent.

MAPE is scale independent but is only sensible if yt � 0 for all
t, and y has a natural zero.
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Measures of forecast accuracy
Mean Absolute Scaled Error

MASE = T−1
T�

t=1

|yt − ŷt|t−1|/Q

where Q is a stable measure of the scale of the �me
series {yt}.
For non-seasonal �me series,

Q = (T − 1)−1
T�

t=2

|yt − yt−1|

works well. Then MASE is equivalent to MAE rela�ve to a
naive method.
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Measures of forecast accuracy
Mean Absolute Scaled Error

MASE = T−1
T�

t=1

|yt − ŷt|t−1|/Q

where Q is a stable measure of the scale of the �me
series {yt}.
For seasonal �me series,

Q = (T −m)−1
T�

t=m+1

|yt − yt−m|

works well. Then MASE is equivalent to MAE rela�ve to a
seasonal naive method.
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Measures of forecast accuracy
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Measures of forecast accuracy
Mean method

RMSE MAE MAPE MASE

38.45 34.83 8.28 2.44

Näıve method

RMSE MAE MAPE MASE

62.69 57.40 14.18 4.01

Seasonal näıve method

RMSE MAE MAPE MASE

14.31 13.40 3.17 0.94
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Measures of forecast accuracy

Time Series and Forecas�ng Evalua�ng forecast accuracy 26

3600

3700

3800

3900

4000

0 100 200 300
Day

Forecast Method
Mean

Naive

Drift

Dow Jones Index (daily ending 15 Jul 94)

3600

3700

3800

3900

4000

0 100 200 300
Day

Forecast Method
Mean

Naive

Drift

Dow Jones Index (daily ending 15 Jul 94)

Measures of forecast accuracy
Mean method

RMSE MAE MAPE MASE

148.24 142.42 3.66 8.70

Näıve method

RMSE MAE MAPE MASE

62.03 54.44 1.40 3.32

Dri� model

RMSE MAE MAPE MASE

53.70 45.73 1.18 2.79
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Training and test sets

Available data

Training set Test set
(e.g., 80%) (e.g., 20%)

The test set must not be used for any aspect of
model development or calcula�on of forecasts.
Forecast accuracy is based only on the test set.
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Training and test sets

beer3 <- window(ausbeer,start=1992,end=2005.99)

beer4 <- window(ausbeer,start=2006)

fit1 <- meanf(beer3,h=20)

fit2 <- rwf(beer3,h=20)

accuracy(fit1,beer4)

accuracy(fit2,beer4)

In-sample accuracy (one-step forecasts)
accuracy(fit1)

accuracy(fit2)
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Beware of over-fi�ng
A model which fits the data well does not necessarily
forecast well.
A perfect fit can always be obtained by using a
model with enough parameters. (Compare R2)
Over-fi�ng a model to data is as bad as failing to
iden�fy the systema�c pa�ern in the data.
Problems can be overcome by measuring true
out-of-sample forecast accuracy. That is, total data
divided into “training” set and “test” set. Training
set used to es�mate parameters. Forecasts are
made for test set.
Accuracy measures computed for errors in test set
only.
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Poll: true or false?

1 Good forecast methods should have normally
distributed residuals.

2 A model with small residuals will give good forecasts.
3 The best measure of forecast accuracy is MAPE.
4 If your model doesn’t forecast well, you should make

it more complicated.
5 Always choose the model with the best forecast

accuracy as measured on the test set.
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Transforma�ons to stabilize the variance

If the data show different varia�on at different levels of the series,
then a transforma�on can be useful.
Denote original observa�ons as y1, . . . , yn and transformed
observa�ons as w1, . . . ,wn.

Mathema�cal transforma�ons for stabilizing varia�on

Square root wt =
√
yt ↓

Cube root wt = 3
√
yt Increasing

Logarithm wt = log(yt) strength

Logarithms, in par�cular, are useful because they are more
interpretable: changes in a log value are rela�ve (percent) changes
on the original scale.

Time Series and Forecas�ng Transforma�ons 33

Box-Cox transforma�ons

Each of these transforma�ons is close to a member of the
family of Box-Cox transforma�ons:

wt =

�
log(yt), λ = 0;
(yλt − 1)/λ, λ �= 0.

λ = 1: (No substan�ve transforma�on)
λ = 1

2: (Square root plus linear transforma�on)
λ = 0: (Natural logarithm)
λ = −1: (Inverse plus 1)
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Box-Cox transforma�ons
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Box-Cox transforma�ons
yλt for λ close to zero behaves like logs.
If some yt = 0, then must have λ > 0
if some yt < 0, no power transforma�on is possible
unless all yt adjusted by adding a constant to all
values.
Choose a simple value of λ. It makes explana�on
easier.
Results are rela�vely insensi�ve to value of λ
O�en no transforma�on (λ = 1) needed.
Transforma�on o�en makes li�le difference to
forecasts but has large effect on PI.
Choosing λ = 0 is a simple way to force forecasts to
be posi�ve
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Back-transforma�on

We must reverse the transforma�on (or back-transform)
to obtain forecasts on the original scale. The reverse
Box-Cox transforma�ons are given by

yt =
�

exp(wt), λ = 0;
(λWt + 1)1/λ, λ �= 0.

autoplot(BoxCox(elec,lambda=1/3))

fit <- snaive(elec, lambda=1/3)

autoplot(fit)

autoplot(fit, include=120)
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Automated Box-Cox transforma�ons

BoxCox.lambda(elec)

This a�empts to balance the seasonal fluctua�ons
and random varia�on across the series.
Always check the results.
A low value of λ can give extremely large predic�on
intervals.
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Time series decomposi�on

Yt = f(St, Tt, Et)

where Yt = data at period t
St = seasonal component at period t
Tt = trend component at period t
Et = remainder (or irregular or error) com-

ponent at period t

Addi�ve decomposi�on: Yt = St + Tt + Et.
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Euro electrical equipment
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STL decomposi�on
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fit <- stl(elecequip, s.window=5)

autoplot(fit)

Euro electrical equipment

Seasonal sub-series plot of the seasonal component
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Seasonal adjustment

Useful by-product of decomposi�on: an easy way to
calculate seasonally adjusted data.
Addi�ve decomposi�on: seasonally adjusted data
given by

Yt − St = Tt + Et.
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Euro electrical equipment

Seasonally adjusted series
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STL decomposi�on

STL: “Seasonal and Trend decomposi�on using
Loess”,
Very versa�le and robust.
Seasonal component allowed to change over �me,
and rate of change controlled by user.
Smoothness of trend-cycle also controlled by user.
Robust to outliers
Only addi�ve.
Use Box-Cox transforma�ons to get other
decomposi�ons.
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STL decomposi�on
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stl(elecequip,s.window=5)

STL decomposi�on
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stl(elecequip, t.window=15,

s.window="periodic", robust=TRUE)

STL decomposi�on in R

fit <- stl(elecequip, t.window=15,

s.window="periodic", robust=TRUE)

autoplot(fit)

t.window controls wiggliness of trend component.
s.window controls varia�on on seasonal
component.
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Forecas�ng and decomposi�on

Forecast seasonal component by repea�ng the last
year
Forecast seasonally adjusted data using
non-seasonal �me series method.
Combine forecasts of seasonal component with
forecasts of seasonally adjusted data to get forecasts
of original data.
Some�mes a decomposi�on is useful just for
understanding the data before building a separate
forecas�ng model.
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Seas adj elec equipment
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Seas adj elec equipment
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Naive forecasts of seasonally adjusted data

Seas adj elec equipment
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Forecasts from STL +  Random walk

How to do this in R

fit <- stl(elecequip, t.window=15,

s.window="periodic", robust=TRUE)

eeadj <- seasadj(fit)

autoplot(naive(eeadj), xlab="New orders index")

fcast <- forecast(fit, method="naive")

autoplot(fcast, ylab="New orders index")
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Decomposi�on and predic�on intervals

It is common to take the predic�on intervals from
the seasonally adjusted forecasts and modify them
with the seasonal component.
This ignores the uncertainty in the seasonal
component es�mate.
It also ignores the uncertainty in the future seasonal
pa�ern.
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