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Time series data

Time series consist of sequences of observa�ons
collected over �me.
We will assume the �me periods are equally spaced.

Time series examples
Daily IBM stock prices
Monthly rainfall
Annual Google profits
Quarterly Australian beer produc�on

Forecas�ng is es�ma�ng how the sequence of
observa�ons will con�nue into the future.
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Australian beer produc�on
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Time series in R
Australian GDP
ausgdp <- ts(scan("gdp.dat"),frequency=4,

start=1971+2/4)

Class: ts
Print and plo�ng methods available.

> ausgdp

Qtr1 Qtr2 Qtr3 Qtr4

1971 4612 4651

1972 4645 4615 4645 4722

1973 4780 4830 4887 4933

1974 4921 4875 4867 4905

1975 4938 4934 4942 4979

1976 5028 5079 5112 5127

1977 5130 5101 5072 5069

1978 5100 5166 5244 5312

1979 5349 5370 5388 5396

1980 5388 5403 5442 5482
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Time series in R
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Time series in R

Residen�al electricity sales
> elecsales

Time Series:

Start = 1989

End = 2008

Frequency = 1

[1] 2354.34 2379.71 2318.52 2468.99 2386.09 2569.47

[7] 2575.72 2762.72 2844.50 3000.70 3108.10 3357.50

[13] 3075.70 3180.60 3221.60 3176.20 3430.60 3527.48

[19] 3637.89 3655.00
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Time series in R
Main package used in this course
> library(fpp)

This loads:
some data for use in examples and exercises
forecast package (for forecas�ng func�ons)
tseries package (for a few �me series func�ons)
fma package (for lots of �me series data)
expsmooth package (for more �me series data)
lmtest package (for some regression func�ons)
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Time series graphics
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Economy class passengers: Melbourne−Sydney
plot(melsyd[,"Economy.Class"])

Time series graphics
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Antidiabetic drug sales
autoplot(a10)

Time series graphics
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Seasonal plot: antidiabetic drug sales
ggseasonplot(a10, year.labels=TRUE)



Seasonal plots

Data plo�ed against the individual “seasons” in
which the data were observed. (In this case a
“season” is a month.)
Something like a �me plot except that the data from
each season are overlapped.
Enables the underlying seasonal pa�ern to be seen
more clearly, and also allows any substan�al
departures from the seasonal pa�ern to be easily
iden�fied.
In R: ggseasonplot
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Seasonal subseries plots
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Seasonal plot: antidiabetic drug sales

Seasonal subseries plots

Data for each season collected together in �me plot
as separate �me series.
Enables the underlying seasonal pa�ern to be seen
clearly, and changes in seasonality over �me to be
visualized.
In R: ggmonthplot
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Quarterly Australian Beer Produc�on

beer <- window(ausbeer,start=1992)

autoplot(beer)

ggseasonplot(beer,year.labels=TRUE)

ggmonthplot(beer)
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Time series graphics
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Australian quarterly beer production

Time series graphics
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Time series graphics
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Seasonal subseries plot: quarterly beer production

Time series graphics

Time plots
R command: autoplot
Seasonal plots
R command: ggseasonplot
Seasonal subseries plots
R command: ggmonthplot
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Time series pa�erns

Trend pa�ern exists when there is a long-term
increase or decrease in the data.

Seasonal pa�ern exists when a series is influenced by
seasonal factors (e.g., the quarter of the year,
the month, or day of the week).

Cyclic pa�ern exists when data exhibit rises and falls
that are not of fixed period (dura�on usually of
at least 2 years).
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Time series pa�erns
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Time series pa�erns
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Time series pa�erns
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Time series pa�erns
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Seasonal or cyclic?

Differences between seasonal and cyclic pa�erns:

seasonal pa�ern constant length; cyclic pa�ern
variable length
average length of cycle longer than length of
seasonal pa�ern
magnitude of cycle more variable than magnitude of
seasonal pa�ern

The �ming of peaks and troughs is predictable with
seasonal data, but unpredictable in the long term with
cyclic data.
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Autocorrela�on

Covariance and correla�on: measure extent of linear
rela�onship between two variables (y and X).

Autocovariance and autocorrela�on: measure linear
rela�onship between lagged values of a �me series y.

We measure the rela�onship between: yt and yt−1
yt and yt−2
yt and yt−3
etc.
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Example: Beer produc�on
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> lag.plot(beer,lags=9)

Example: Beer produc�on
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> lag.plot(beer,lags=9,do.lines=FALSE)

Lagged sca�erplots

Each graph shows yt plo�ed against yt−k for different
values of k.
The autocorrela�ons are the correla�ons associated
with these sca�erplots.
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Autocorrela�on
We denote the sample autocovariance at lag k by ck and the sample
autocorrela�on at lag k by rk. Then define

ck =
1
T

T�

t=k+1

(yt − ȳ)(yt−k − ȳ)

and rk = ck/c0

r1 indicates how successive values of y relate to each other
r2 indicates how y values two periods apart relate to each other
rk is almost the same as the sample correla�on between yt and
yt−k.
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Autocorrela�on
Results for first 9 lags for beer data:

r1 r2 r3 r4 r5 r6 r7 r8 r9
−0.126 −0.650 −0.094 0.863 −0.099 −0.642 −0.098 0.834 −0.116
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Autocorrela�on

r4 higher than for the other lags. This is due to the
seasonal pa�ern in the data: the peaks tend to be 4
quarters apart and the troughs tend to be 2 quarters
apart.
r2 is more nega�ve than for the other lags because
troughs tend to be 2 quarters behind peaks.
Together, the autocorrela�ons at lags 1, 2, . . . , make
up the autocorrela�on or ACF.
The plot is known as a correlogram

Time Series and Forecas�ng Autocorrela�on 36



ACF
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Recognizing seasonality in a �me series

If there is seasonality, the ACF at the seasonal lag (e.g., 12
for monthly data) will be large and posi�ve.

For seasonal monthly data, a large ACF value will be
seen at lag 12 and possibly also at lags 24, 36, . . .
For seasonal quarterly data, a large ACF value will be
seen at lag 4 and possibly also at lags 8, 12, . . .
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Australian monthly electricity produc�on
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Australian monthly electricity produc�on

Time plot shows clear trend and seasonality.
The same features are reflected in the ACF.

The slowly decaying ACF indicates trend.
The ACF peaks at lags 12, 24, 36, . . . , indicate
seasonality of length 12.
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White noise

Time Series and Forecas�ng White noise 44

−3

−2

−1

0

1

2

0 10 20 30 40 50
Time

x

White noise

White noise data is uncorrelated across �me
with zero mean and constant variance.
(Technically, we require independence as well.)

Think of white noise as completely uninteres�ng
with no predictable pa�erns.

Example: White noise
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White noise

Example: White noise

r1 = 0.013
r2 = −0.163
r3 = 0.163
r4 = −0.259
r5 = −0.198
r6 = 0.064
r7 = −0.139
r8 = −0.032
r9 = 0.199
r10 = −0.240
Sample autocorrela�ons for white noise series.
For uncorrelated data, we would expect each
autocorrela�on to be close to zero.
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Sampling distribu�on of autocorrela�ons

Sampling distribu�on of rk for white noise data is
asympto�cally N(0,1/T).

95% of all rk for white noise must lie within
±1.96/

√
T.

If this is not the case, the series is probably not WN.
Common to plot lines at±1.96/

√
T when plo�ng

ACF. These are the cri�cal values.
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Example: Pigs slaughtered
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Example: Pigs slaughtered
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Example: Pigs slaughtered

Monthly total number of pigs slaughtered in the state of
Victoria, Australia, from January 1990 through August
1995. (Source: Australian Bureau of Sta�s�cs.)

Difficult to detect pa�ern in �me plot.
ACF shows some significant autocorrela�on at lags 1,
2, and 3.
r12 rela�vely large although not significant. This may
indicate some slight seasonality.

These show the series is not a white noise series.
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Random walk
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Random walks have consecu�ve differences that
are white noise.

Random walk model

yt − yt−1 = et or yt = yt−1 + et .

“Random walk” model very widely used for
non-sta�onary data.
Best forecast of future observa�ons is the
last observa�on.
Random walks typically have:

long periods of apparent trends up or down
sudden and unpredictable changes in direc�on.
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Random walk
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Random walk with dri� model

yt − yt−1 = c + et or yt = c + yt−1 + et .

c is the average change between
consecu�ve observa�ons.
Best forecast of future observa�ons is the
last observa�on plus ch where h is the
forecast horizon.
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Random walk with dri�
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c = 0.5, σ = 1


