Model assisted statistics and applications (2006), 1(3), 147-155.

Denny Meyer1 and Rob J. Hyndman2

  1. Faculty of Life and Social Sciences, Swinburne University of Technology, Hawthorn VIC 3122.
  2. Department of Econometrics and Business Statistics, Monash University, VIC 3800, Australia.

Abstract: This paper investigates the effect of aggregation in relation to the accuracy of television network rating forecasts. We compare the forecast accuracy of network ratings using population rating models, rating models for demographic/behavioural segments and individual viewing behaviour models. Models are fitted using neural networks, decision trees and regression. The most accurate forecasts are obtained by aggregating forecasts from segment rating models, with neural networks being used to fit these models. The resulting models allow for interactions between the variables and the non-linear carry-over effect is found to be the most important predictor of segment ratings, followed by time of day and then genre. The analysis differs from those of previous authors in several important respects. The AC Nielsen panel data considered stretches over 31 days, 24 hours per day, 60 minutes per hour, making it necessary for ratings to be appropriately transformed prior to the fitting of the rating models and for non-viewing time periods to be under-sampled when fitting the models for individual viewing. For the first time individual viewing within each 15 minute time period is defined by network choice and proportion of viewing time.

Keywords: aggregation, discrete choice models, neural networks, decision trees, two stage models.

Online article


1 2 3 5
December 7th, 2016

Exploring the influence of short-term temperature patterns on temperature-related mortality: a case-study of Melbourne, Australia

October 13th, 2016

Reconciling forecasts: the hts and thief packages

September 20th, 2016

smoothAPC package for R

September 20th, 2016

stR package for R

September 15th, 2016

Forecasting large collections of related time series

September 14th, 2016

Grouped functional time series forecasting: an application to age-specific mortality rates

August 22nd, 2016

thief package for R

June 21st, 2016

Exploring time series collections used for forecast evaluation

June 9th, 2016

Associations between outdoor fungal spores and childhood and adolescent asthma hospitalisations

May 25th, 2016

ISCRR time series workshop

May 6th, 2016

Automatic foRecasting using R

February 29th, 2016

On sampling methods for costly multi-objective black-box optimization

February 19th, 2016

Dynamic Algorithm Selection for Pareto Optimal Set Approximation

February 4th, 2016

Forecasting uncertainty in electricity smart meter data by boosting additive quantile regression

January 30th, 2016

Bayesian rank selection in multivariate regressions

January 25th, 2016

Probabilistic Energy Forecasting: Global Energy Forecasting Competition 2014 and Beyond

January 24th, 2016

Long-term forecasts of age-specific participation rates with functional data models

January 13th, 2016

Visualising Forecasting Algorithm Performance using Time Series Instance Spaces

January 1st, 2016

Bagging exponential smoothing methods using STL decomposition and Box-Cox transformation

January 1st, 2016

Fast computation of reconciled forecasts for hierarchical and grouped time series

December 31st, 2015

Measuring forecast accuracy

November 26th, 2015

Forecasting hierarchical and grouped time series through trace minimization

November 2nd, 2015

Forecasting big time series data using R

October 7th, 2015

Optimal forecast reconciliation for big time series data

October 5th, 2015

Google workshop: Forecasting and visualizing big time series data

September 16th, 2015


August 29th, 2015

Forecasting with temporal hierarchies

August 25th, 2015

New IJF editors

August 17th, 2015

Machine learning bootcamp

August 7th, 2015

Statistical issues with using herbarium data for the estimation of invasion lag-phases

June 30th, 2015

Exploring the feature space of large collections of time series

June 26th, 2015

Exploring the boundaries of predictability: what can we forecast, and when should we give up?

June 25th, 2015

Automatic algorithms for time series forecasting

June 23rd, 2015

MEFM: An R package for long-term probabilistic forecasting of electricity demand

June 19th, 2015

Probabilistic forecasting of peak electricity demand

June 10th, 2015

Do human rhinovirus infections and food allergy modify grass pollen–induced asthma hospital admissions in children?

June 8th, 2015

STR: A Seasonal-Trend Decomposition Procedure Based on Regression

June 4th, 2015

Probabilistic time series forecasting with boosted additive models: an application to smart meter data

June 1st, 2015

Large-scale unusual time series detection

May 26th, 2015

Visualization of big time series data

May 22nd, 2015

Probabilistic forecasting of long-term peak electricity demand

April 20th, 2015

A note on the validity of cross-validation for evaluating time series prediction

April 4th, 2015

Discussion of “High-dimensional autocovariance matrices and optimal linear prediction”

April 1st, 2015

Change to the IJF editors

February 23rd, 2015

Visualization and forecasting of big time series data

January 12th, 2015

Visualizing and forecasting big time series data

December 24th, 2014

Bivariate data with ridges: two-dimensional smoothing of mortality rates

December 17th, 2014

MEFM package for R

October 21st, 2014

Optimally reconciling forecasts in a hierarchy

September 23rd, 2014

Forecasting: principles and practice (UWA course)