List

Jan Verbesselt1, Rob J Hyndman2, Glenn Newnham1, Darius Culvenor1

Remote Sensing of Environment (2010), 114(1), 106-115.

  1. Remote sensing team, CSIRO Sustainable Ecosystems, Private Bag 10, Melbourne VIC 3169, Australia
  2. Department of Econometrics and Business Statistics, Monash University, Melbourne VIC 3800, Australia

Abstract

A wealth of remotely sensed time series covering large areas is now available to the earth science community. Change detection methods are often not capable of detecting land cover changes within time series that are heavily influenced by seasonal climatic variations. Detecting change within the trend and seasonal components of time series enables the detection of different types of changes. Changes occurring in the trend component indicate disturbances (e.g., insect attack), while changes occurring in the seasonal component indicate phenological changes (e.g., change in land cover type). An approach is proposed for automated change detection in time series by detecting and characterizing Breaks For Additive Seasonal and Trend (BFAST). BFAST integrates the decomposition of time series into trend, seasonal, and remainder components with methods for detecting significant change within time series. BFAST iteratively estimates the time and number of changes, and characterizes change by its magnitude and direction. We tested BFAST by simulating 16-day composites of Normalized Difference Vegetation Index (NDVI) time series with varying amounts of seasonality and noise, and by adding abrupt changes at different times and magnitudes. This revealed that BFAST can robustly detect change with different magnitudes (>0.1 NDVI) within time series with different noise levels (0.01–0.07 σ) and seasonal amplitudes (0.1–0.5 NDVI) Additionally, BFAST was applied to 16-day NDVI MODIS (Moderate Resolution Imaging Spectroradiometer) composites for a forested study area in south eastern Australia. This showed that BFAST is able to detect and characterize spatial and temporal changes in a forested landscape. BFAST is developed as a generic change detection approach, and can be applied to time series without the need to normalize for specific land cover types, select a reference period, or define a threshold or change trajectory. The method can be used to detect and characterize changes within time series or can be integrated within monitoring frameworks and used as an alarm system to flag when and where significant changes occur.

Online paper

The methods in this paper are implemented in the bfast package for R.

  Posts

1 2 3 5
September 20th, 2016

smoothAPC package for R

September 20th, 2016

stR package for R

September 14th, 2016

Grouped functional time series forecasting: an application to age-specific mortality rates

August 30th, 2016

Forecasting large collections of related time series

August 22nd, 2016

thief package for R

June 21st, 2016

Exploring time series collections used for forecast evaluation

June 9th, 2016

Associations between outdoor fungal spores and childhood and adolescent asthma hospitalisations

May 25th, 2016

ISCRR time series workshop

May 19th, 2016

Visualising Forecasting Algorithm Performance using Time Series Instance Spaces

May 6th, 2016

Automatic foRecasting using R

February 29th, 2016

On sampling methods for costly multi-objective black-box optimization

February 19th, 2016

Dynamic Algorithm Selection for Pareto Optimal Set Approximation

February 4th, 2016

Forecasting uncertainty in electricity smart meter data by boosting additive quantile regression

January 30th, 2016

Bayesian rank selection in multivariate regressions

January 25th, 2016

Probabilistic Energy Forecasting: Global Energy Forecasting Competition 2014 and Beyond

January 24th, 2016

Long-term forecasts of age-specific participation rates with functional data models

January 1st, 2016

Bagging exponential smoothing methods using STL decomposition and Box-Cox transformation

January 1st, 2016

Fast computation of reconciled forecasts for hierarchical and grouped time series

December 31st, 2015

Measuring forecast accuracy

November 26th, 2015

Forecasting hierarchical and grouped time series through trace minimization

November 2nd, 2015

Forecasting big time series data using R

October 7th, 2015

Optimal forecast reconciliation for big time series data

October 5th, 2015

Google workshop: Forecasting and visualizing big time series data

September 16th, 2015

Unbelievable

August 29th, 2015

Forecasting with temporal hierarchies

August 25th, 2015

New IJF editors

August 17th, 2015

Machine learning bootcamp

August 7th, 2015

Statistical issues with using herbarium data for the estimation of invasion lag-phases

June 30th, 2015

Exploring the feature space of large collections of time series

June 26th, 2015

Exploring the boundaries of predictability: what can we forecast, and when should we give up?

June 25th, 2015

Automatic algorithms for time series forecasting

June 23rd, 2015

MEFM: An R package for long-term probabilistic forecasting of electricity demand

June 19th, 2015

Probabilistic forecasting of peak electricity demand

June 10th, 2015

Do human rhinovirus infections and food allergy modify grass pollen–induced asthma hospital admissions in children?

June 8th, 2015

STR: A Seasonal-Trend Decomposition Procedure Based on Regression

June 4th, 2015

Probabilistic time series forecasting with boosted additive models: an application to smart meter data

June 1st, 2015

Large-scale unusual time series detection

May 26th, 2015

Visualization of big time series data

May 22nd, 2015

Probabilistic forecasting of long-term peak electricity demand

April 20th, 2015

A note on the validity of cross-validation for evaluating time series prediction

April 4th, 2015

Discussion of “High-dimensional autocovariance matrices and optimal linear prediction”

April 1st, 2015

Change to the IJF editors

February 23rd, 2015

Visualization and forecasting of big time series data

January 12th, 2015

Visualizing and forecasting big time series data

December 24th, 2014

Bivariate data with ridges: two-dimensional smoothing of mortality rates

December 17th, 2014

MEFM package for R

October 21st, 2014

Optimally reconciling forecasts in a hierarchy

September 23rd, 2014

Forecasting: principles and practice (UWA course)

September 1st, 2014

Outdoor fungal spores are associated with child asthma hospitalisations – a case-crossover study

August 1st, 2014

Efficient identification of the Pareto optimal set