I’ve added a couple of new functions to the forecast package for R which implement two types of cross-validation for time series. Continue reading →

# Tag / R

# Q&A time

Someone sent me some questions by email, and I decided to answer some of them here. Continue reading →

# Tourism forecasting competition data as an R package

The data used in the tourism forecasting competition, discussed in Athanasopoulos et al (2011), have been made available in the Tcomp package for R. The objects are of the same format as for Mcomp package containing data from the M1 and M3 competitions.

Thanks to Peter Ellis for putting the package together. He has also produced a nice blog post about it.

# Hadley Wickham Master R Developer course coming to Melbourne

Hadley Wickham’s popular R developer course is coming to Melbourne on 12-13 December 2016. Bookings can be made via Eventbrite. Continue reading →

# Forecast intervals for aggregates

A common problem is to forecast the aggregate of several time periods of data, using a model fitted to the disaggregated data. For example, you may have monthly data but wish to forecast the total for the next year. Or you may have weekly data, and want to forecast the total for the next four weeks.

If the point forecasts are means, then adding them up will give a good estimate of the total. But prediction intervals are more tricky due to the correlations between forecast errors.

# R package forecast v7.2 now on CRAN

I’ve pushed a minor update to the forecast package to CRAN. Some highlights are listed here.

# R packages for forecast combinations

It has been well-known since at least 1969, when Bates and Granger wrote their famous paper on “The Combination of Forecasts”, that combining forecasts often leads to better forecast accuracy.

So it is helpful to have a couple of new R packages which do just that: **opera** and **forecastHybrid**.

# Rmarkdown template for a Monash working paper

This is only directly relevant to my Monash students and colleagues, but the same idea might be useful for adapting to other institutions.

Some recent changes in the rmarkdown and bookdown packages mean that it is now possible to produce working papers in exactly the same format as we previously used with LaTeX. Continue reading →

# The thief package for R: Temporal HIErarchical Forecasting

I have a new R package available to do temporal hierarchical forecasting, based on my paper with George Athanasopoulos, Nikolaos Kourentzes and Fotios Petropoulos. (Guess the odd guy out there!)

It is called “thief” – an acronym for Temporal HIErarchical Forecasting. The idea is to take a seasonal time series, and compute all possible temporal aggregations that result in an integer number of observations per year. For example, a quarterly time series is aggregated to biannual and annual; while a monthly time series is aggregated to 2-monthly, quarterly, 4-monthly, biannual and annual. Each of the resulting time series are forecast, and then the forecasts are reconciled using the hierarchical reconciliation algorithm described in our paper.

It turns out that this tends to give better forecasts, even though no new information has been added, especially for time series with long seasonal periods. It also allows different types of forecasts for different forecast horizons to be combined in a consistent manner.

# “Forecasting with R” short course in Eindhoven

I will be giving my 3-day short-course/workshop on “Forecasting with R” in Eindhoven (Netherlands) from 19-21 October.

Details at https://www.win.tue.nl/~adriemel/shortcourse.html