A blog by Rob J Hyndman 

Twitter Gplus RSS

Posts Tagged ‘forecasting’:


Seven forecasting blogs

Published on 22 April 2014

There are sev­eral other blogs on fore­cast­ing that read­ers might be inter­ested in. Here are seven worth fol­low­ing: No Hes­i­ta­tions by Fran­cis Diebold (Pro­fes­sor of Eco­nom­ics, Uni­ver­sity of Penn­syl­va­nia). Diebold needs no intro­duc­tion to fore­cast­ers. He pri­mar­ily cov­ers fore­cast­ing in eco­nom­ics and finance, but also xkcd car­toons, graph­ics, research issues, etc. Econo­met­rics Beat by Dave Giles. Dave is a pro­fes­sor of eco­nom­ics at the Uni­ver­sity of Vic­to­ria (Canada), for­merly from my own depart­ment at Monash Uni­ver­sity (Aus­tralia), and a native New Zealan­der. Not a lot on fore­cast­ing, but plenty of inter­est­ing posts about econo­met­rics and sta­tis­tics more gen­er­ally. Busi­ness fore­cast­ing by Clive Jones (a pro­fes­sional fore­caster based in Col­orado, USA). Orig­i­nally about sales and new prod­uct fore­cast­ing, but he now cov­ers a lot of other fore­cast­ing top­ics and has an inter­est­ing prac­ti­tioner per­spec­tive. Freakono­met­rics: by Arthur Char­p­en­tier (an actu­ary and pro­fes­sor of math­e­mat­ics at the Uni­ver­sity of Que­bec at Mon­tréal, Canada). This is the most pro­lific blog on this list. Wide rang­ing and tak­ing in sta­tis­tics, fore­cast­ing, econo­met­rics, actu­ar­ial sci­ence, R, and any­thing else that takes his fancy. Some­times in French. No free hunch: the kag­gle blog. Some of the most inter­est­ing posts are from kag­gle com­pe­ti­tion win­ners explain­ing their meth­ods. Energy fore­cast­ing by Tao Hong (for­merly an energy fore­caster for

(More)…

 
No Comments  comments 

Errors on percentage errors

Published on 16 April 2014

The MAPE (mean absolute per­cent­age error) is a pop­u­lar mea­sure for fore­cast accu­racy and is defined as     where denotes an obser­va­tion and denotes its fore­cast, and the mean is taken over . Arm­strong (1985, p.348) was the first (to my knowl­edge) to point out the asym­me­try of the MAPE say­ing that “it has a bias favor­ing esti­mates that are below the actual values”.

 
6 Comments  comments 

My forecasting book now on Amazon

Published on 9 April 2014

For all those peo­ple ask­ing me how to obtain a print ver­sion of my book “Fore­cast­ing: prin­ci­ples and prac­tice” with George Athana­sopou­los, you now can. Order on Ama​zon​.com Order on Ama​zon​.co​.uk Order on Ama​zon​.fr The online book will con­tinue to be freely avail­able. The print ver­sion of the book is intended to help fund the devel­op­ment of the OTexts plat­form. The price is US45, 27 or €35. Compare that to195 for my pre­vi­ous fore­cast­ing text­book, 150 for Fildes and Ord, or182 for Gonzalez-​​​​Rivera. No mat­ter how good the books are, the prices are absurdly high. OTexts is intended to be a dif­fer­ent kind of pub­lisher — all our books are online and free, those in print will be rea­son­ably priced. The online ver­sion will con­tinue to be updated reg­u­larly. The print ver­sion is a snap­shot of the online ver­sion today. We will release a new print edi­tion occa­sion­ally, no more than annu­ally and only when the online ver­sion has changed enough to war­rant a new print edi­tion. We are plan­ning an offline elec­tronic ver­sion as well. I’ll announce it here when it is ready.

 
1 Comment  comments 

Cover of my forecasting textbook

Published on 18 March 2014

We now have a cover for the print ver­sion of my fore­cast­ing book with George Athana­sopou­los. It should be on Ama­zon in a cou­ple of weeks. The book is also freely avail­able online. This is a vari­a­tion of the most pop­u­lar one in the poll con­ducted a month or two ago. The cover was pro­duced by Scar­lett Rugers who I can hap­pily rec­om­mend to any­one want­ing a book cover designed.

 
No Comments  comments 

Fast computation of cross-​​validation in linear models

Published on 17 March 2014

The leave-​​​​one-​​​​out cross-​​​​validation sta­tis­tic is given by     where , are the obser­va­tions, and is the pre­dicted value obtained when the model is esti­mated with the th case deleted. This is also some­times known as the PRESS (Pre­dic­tion Resid­ual Sum of Squares) sta­tis­tic. It turns out that for lin­ear mod­els, we do not actu­ally have to esti­mate the model times, once for each omit­ted case. Instead, CV can be com­puted after esti­mat­ing the model once on the com­plete data set.

 
6 Comments  comments 

Probabilistic forecasting by Gneiting and Katzfuss (2014)

Published on 14 March 2014

The IJF is intro­duc­ing occa­sional review papers on areas of fore­cast­ing. We did a whole issue in 2006 review­ing 25 years of research since the Inter­na­tional Insti­tute of Fore­cast­ers was estab­lished. Since then, there has been a lot of new work in appli­ca­tion areas such as call cen­ter fore­cast­ing and elec­tric­ity price fore­cast­ing. In addi­tion, there are areas we did not cover in 2006 includ­ing new prod­uct fore­cast­ing and fore­cast­ing in finance. There have also been method­olog­i­cal and the­o­ret­i­cal devel­op­ments over the last eight years. Con­se­quently, I’ve started invit­ing emi­nent researchers to write sur­vey papers for the jour­nal. One obvi­ous choice was Tilmann Gneit­ing, who has pro­duced a large body of excel­lent work on prob­a­bilis­tic fore­cast­ing in the last few years. The the­ory of fore­cast­ing was badly in need of devel­op­ment, and Tilmann and his coau­thors have made sev­eral great con­tri­bu­tions in this area. How­ever, when I asked him to write a review he explained that another jour­nal had got in before me, and that the review was already writ­ten. It appeared in the very first vol­ume of the new jour­nal Annual Review of Sta­tis­tics and its Appli­ca­tion: Gneit­ing and Katz­fuss (2014) Prob­a­bilis­tic Fore­cast­ing, pp.125–151. Hav­ing now read it, I’m both grate­ful for this more acces­si­ble

(More)…

 
1 Comment  comments 

Testing for trend in ARIMA models

Published on 13 March 2014

Today’s email brought this one: I was won­der­ing if I could get your opin­ion on a par­tic­u­lar prob­lem that I have run into dur­ing the review­ing process of an arti­cle. Basi­cally, I have an analy­sis where I am look­ing at a cou­ple of time-​​​​series and I wanted to know if, over time there was an upward trend in the series. Inspec­tion of the raw data sug­gests there is, but we want some sta­tis­ti­cal evi­dence for this. To achieve this I ran some ARIMA (0,1,1) mod­els includ­ing a drift/​​trend term to see if the mean of the series did indeed shift upwards with time and found that it did. How­ever, we have run into an issue with a reviewer who argues that dif­fer­enc­ing removes trends and may not be a suit­able way to detect trends. There­fore, the fact that we found a trend despite dif­fer­enc­ing sug­gest that dif­fer­enc­ing was not suc­cess­ful. I know there are a few papers and text­books that use ARIMA (0,1,1) mod­els as ‘ran­dom walks with drift’-type mod­els so I cited them as exam­ples of this pro­ce­dure in action, but they remained uncon­vinced. Instead it was sug­gested that I look for trends in the raw undif­fer­enced time-​​​​series as these would be more reli­able as no trends had been removed. AT the moment I am hes­i­tant to do this

(More)…

 
10 Comments  comments 

Unit root tests and ARIMA models

Published on 12 March 2014

An email I received today: I have a small prob­lem. I have a time series called x : — If I use the default val­ues of auto.arima(x), the best model is an ARIMA(1,0,0) — How­ever, I tried the func­tion ndiffs(x, test=“adf”) and ndiffs(x, test=“kpss”) as the KPSS test seems to be the default value, and the num­ber of dif­fer­ence is 0 for the kpss test (con­sis­tent with the results of auto.arima() ) but 2 for the ADF test. I then tried auto.arima(x, test=“adf”) and now I have another model ARIMA(1,2,1). I am unsure which order of inte­gra­tion I should use as tests give fairly dif­fer­ent results. Is there a test that prevails ?

 
No Comments  comments 

Using old versions of R packages

Published on 10 March 2014

I received this email yes­ter­day: I have been using your ‘fore­cast’ pack­age for more than a year now. I was on R ver­sion 2.15 until last week, but I am hav­ing issues with lubri­date pack­age, hence decided to update R ver­sion to R 3.0.1. In our orga­ni­za­tion even get­ting an open source appli­ca­tion require us to go through a whole lot of approval processes. I asked for R 3.0.1, before I get approval for 3.0.1, a new ver­sion of R ( R 3.0.2 ) came out. Unfor­tu­nately for me fore­cast pack­age was built in R3.0.2. Is there any ver­sion of fore­cast pack­age that works in older ver­sion of R(3.0.1). I just don’t want to go through this entire approval war again within the orga­ni­za­tion. Please help if you have any work around for this This is unfor­tu­nately very com­mon. Many cor­po­rate IT envi­ron­ments lock down com­put­ers to such an extent that it crip­ples the use of mod­ern soft­ware like R which is con­tin­u­ously updated. It also affects uni­ver­si­ties (which should know bet­ter) and I am con­stantly try­ing to invent work-​​​​arounds to the con­straints that Monash IT ser­vices place on staff and stu­dent com­put­ers. Here are a few thoughts that might help.

 
6 Comments  comments 

IJF news

Published on 7 March 2014

This is a short piece I wrote for the next issue of the Ora­cle newslet­ter pro­duced by the Inter­na­tional Insti­tute of Forecasters.

 
No Comments  comments